189 resultados para Trp-containing peptides
Resumo:
YcdB is a periplasmic haem-containing protein from Escherichia coli that has a potential role in iron transport. It is currently the only reported haem-containing Tat-secreted substrate. Here, the overexpression, purification, crystallization and structure determination at 2.0 angstrom resolution are reported for the apo form of the protein. The apo-YcdB structure resembles those of members of the haem-dependent peroxidase family and thus confirms that YcdB is also a member of this family. Haem-soaking experiments with preformed apo-YcdB crystals have been optimized to successfully generate haem-containing YcdB crystals that diffract to 2.9 angstrom. Completion of model building and structure refinement are under way.
Resumo:
The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carboncarbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary alpha-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary alpha-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type 11 ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl) phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18 02 atmosphere were performed. One atom of 180, was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary a-carbon.
Resumo:
Alpha-, beta- and gamma-melanocyte stimulating hormones (MSHs) are peptides derived from the ACTH precursor, pro-opiomelanocortin. All three peptides have been highly conserved throughout evolution but their exact biological function in mammals is still largely obscure. In recent years, there has been a surge of interest in alpha-MSH and its role in the regulation of feeding. Gamma-MSH by contrast has been shown to be involved in the regulation of adrenal steroidogenesis and also has effects on the cardiovascular and renal systems. This review will provide an overview of the role that gamma-MSH peptides play in the regulation of adrenal steroidogenesis. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The 5' terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 313 (VTg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3D(pol). To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3D(pol) in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV ere has been identified previously to be within the 5' untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 313 peptides has now been determined, and the role of the FMDV ere (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.
Resumo:
The pro-opiomelanocortin (POMC)-derived peptides, pro-gamma-MSH (16K fragment), and Lys-gamma(3)-MSH, have been shown to potentiate the steroidogenic action of corticotrophin (ACTH) on the adrenal cortex. Using a continuously perfused adrenal cell column system, we have tested the hypothesis that gamma-MSH peptides exert their effect through the Melanocortin 3 Receptor (MC3-R), since this is the only known receptor to have high affinity for gamma-MSH peptides and has been suggested to be expressed in the rat adrenal. To investigate this hypothesis we tested whether the MC3-R agonist MTII and antagonist SHU9119 could mimic or block the actions of pro-gamma-MSH. We found that MTII could not mimic, and SHU9119 could not block pro-gamma-MSH mediated potentiation of ACTH-induced steroidogenesis. These results suggest that the MC3-R is not involved in mediating the potentiation effect, adding further evidence to the argument that another melanocortin receptor exists.
Resumo:
The adrenal cortex is a dynamic organ in which the cells of the outer cortex continually divide. It is well known that this cellular proliferation is dependent on constant stimulation from peptides derived from the ACTH precursor pro-opiomelanocortin (POMC) because disruption of pituitary corticotroph function results in rapid atrophy of the gland. Previous results from our laboratory have suggested that the adrenal mitogen is a fragment derived from the N-terminal of POMC not containing the gamma-MSH sequence. Because such a peptide is not generated during processing of POMC in the pituitary, we proposed that the mitogen is generated from circulating pro-gamma-MSH by an adrenal protease. Using degenerate oligonucleotides, we identified a secreted serine protease expressed by the adrenal gland that we named adrenal secretory protease (ASP). In the adrenal cortex, expression of ASP is limited to the outer zona glomerulosa/fasciculata, the region where cortical cells are believed to be derived, and is significantly up-regulated during compensatory growth. Y1 adrenocortical cells transfected with a vector expressing an antisense RNA (and thus having reduced levels of endogenous ASP) were found to grow slower than sense controls while also losing their ability to utilize exogenous pro-gamma-MSH in the media supporting a role for ASP in adrenal growth. Digestion of an N-POMC peptide substrate encompassing the residues around the dibasic cleavage site at positions 49/50 with affinity-purified ASP showed cleavage not to occur at the dibasic site but two residues downstream leading us to propose the identity of the adrenal mitogen to be N-POMC (1-52).
Resumo:
The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E-2), and progesterone (P-4) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E-2, and P-4 and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E-2 (4.6-fold), and P-4 (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E-2 (P < 0.05) but enhanced IGF-induced P-4 secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.
Resumo:
The crystal structure of a terminally protected tripeptide Boc-Leu-Aib-beta-Ala-OMe 1 containing non-coded amino acids reveals that it adopts a beta-turn structure, which sell-assembles to form a supramolecular beta-sheet via non-covalent interactions. The SEM image of peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A single-crystal X-ray diffraction study of the terminally protected tetrapeptide Boc-beta-Ala-Aib-Leu-Aib-OMe 1 (Aib: alpha-aminoisobutyric acid; beta-Ala: beta-Alanine) reveals that it adopts a new type of double turn structure which self-associates to form a unique supramolecular helix through intermolecular hydrogen bonds. Scanning electron microscopic studies show that peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
FT-IR data of six terminally blocked tripeptides containing Acp (epsilon-aminocaproic acid) reveals that all of them form supramolecular beta-sheets in the solid state. Single crystal X-ray diffraction studies of two peptides not only support this data but also disclose the fact that the supramolecular beta-sheet formation is initiated via dimer formation. The Scanning Electron Microscopic images of all peptides exhibit amyloid-like fibrils that show green birefringence after binding with Congo red, which is a characteristic feature of many neurodegenerative disease causing amyloid fibrils. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A dinuclear Ni-II complex, [Ni-2(L)(2)(H2O)(NCS)(2)]center dot 3H(2)O (1) in which the metal atoms are bridged by one water molecule and two mu(2)-phenolate ions, and a thiocyanato-bridged dimeric Cull complex, [Cu(L)NCS](2) (2) [L = tridentate Schiff-base ligand, N-(3-aminopropyl)salicylaldimine, derived from 1:1 condensation of salicylaldehyde and 1,3-diaminopropane], have been synthesized and characterized by IR and UV/Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction studies. The structure of 1 consists of dinuclear units with crystallographic C-2 symmetry in which each Ni-II atom is in a distorted octahedral environment. The Ni-O distance and the Ni-O-Ni angle, through the bridged water molecule, are 2.240(11) angstrom and 82.5(5)degrees, respectively. The structure of 2 consists of dinuclear units bridged asymmetrically by di-mu(1,3)-NCS ions; each Cull ion is in a square-pyramidal environment with tau = 0.25. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complex 1 with J = 3.1 cm(-1), whereas complex 2 exhibits weak antiferromagnetic coupling between the Cu-II centers with J = -1.7 cm(-1). ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of both silacyclopent-3-ene and phenylsilane, have been carried out to obtain second-order rate constants for its reaction with CH3Cl. The reaction was studied in the gas phase at six temperatures in the range 294-606 K. The second-order rate constants gave a curved Arrhenius plot with a minimum value at T approximate to 370 K. The reaction showed no pressure dependence in the presence of up to 100 Torr SF6. The rate constants, however, showed a weak dependence on laser pulse energy. This suggests an interpretation requiring more than one contributing reaction pathway to SiH2 removal. Apart from a direct reaction of SiH2 with CH3Cl, reaction of SiH2 with CH3 (formed by photodissociation of CH3Cl) seems probable, with contributions of up to 30% to the rates. Ab initio calculations (G3 level) show that the initial step of reaction of SiH2 with CH3Cl is formation of a zwitterionic complex (ylid), but a high-energy barrier rules out the subsequent insertion step. On the other hand, the Cl-abstraction reaction leading to CH3 + ClSiH2 has a low barrier, and therefore, this seems the most likely candidate for the main reaction pathway of SiH2 with CH3Cl. RRKM calculations on the abstraction pathway show that this process alone cannot account for the observed temperature dependence of the rate constants. The data are discussed in light of studies of other silylene reactions with haloalkanes.
Resumo:
The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.