35 resultados para Transformada wavelet packet, Máquinas de vetor de suporte
Resumo:
The current work discusses the compositional analysis of spectra that may be related to amorphous materials that lack discernible Lorentzian, Debye or Drude responses. We propose to model such response using a 3-dimensional random RLC network using a descriptor formulation which is converted into an input-output transfer function representation. A wavelet identification study of these networks is performed to infer the composition of the networks. It was concluded that wavelet filter banks enable a parsimonious representation of the dynamics in excited randomly connected RLC networks. Furthermore, chemometric classification using the proposed technique enables the discrimination of dielectric samples with different composition. The methodology is promising for the classification of amorphous dielectrics.
Resumo:
This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.
Resumo:
This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.
Resumo:
This letter presents an accurate delay analysis in prioritised wireless sensor networks (WSN). The analysis is an enhancement of the existing analysis proposed by Choobkar and Dilmaghani, which is only applicable to the case where the lower priority nodes always have packets to send in the empty slots of the higher priority node. The proposed analysis is applicable for any pattern of packet arrival, which includes the general case where the lower priority nodes may or may not have packets to send in the empty slots of the higher priority nodes. Evaluation of both analyses showed that the proposed delay analysis has better accuracy over the full range of loads and provides an excellent match to simulation results.
Resumo:
Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.