168 resultados para Tracking errors
Resumo:
Three existing models of Interplanetary Coronal Mass Ejection (ICME) transit between the Sun and the Earth are compared to coronagraph and in situ observations: all three models are found to perform with a similar level of accuracy (i.e. an average error between observed and predicted 1AU transit times of approximately 11 h). To improve long-term space weather prediction, factors influencing CME transit are investigated. Both the removal of the plane of sky projection (as suffered by coronagraph derived speeds of Earth directed CMEs) and the use of observed values of solar wind speed, fail to significantly improve transit time prediction. However, a correlation is found to exist between the late/early arrival of an ICME and the width of the preceding sheath region, suggesting that the error is a geometrical effect that can only be removed by a more accurate determination of a CME trajectory and expansion. The correlation between magnetic field intensity and speed of ejecta at 1AU is also investigated. It is found to be weak in the body of the ICME, but strong in the sheath, if the upstream solar wind conditions are taken into account.
Resumo:
Rationale: In UK hospitals, the preparation of all total parenteral nutrition (TPN) products must be made in the pharmacy as TPNs are categorised as high-risk injectables (NPSA/2007/20). The National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors in the UK since August 2003. This study reports on types of error associated with the preparation of TPNs, including the stage at which these were identified and potential and actual patient outcomes. Methods: Reports of compounding errors for the period 1/2004 - 3/2007 were analysed on an Excel spreadsheet. Results: Of a total of 3691 compounding error reports, 674 (18%) related to TPN products; 548 adult vs. 126 paediatric. A significantly higher proportion of adult TPNs (28% vs. 13% paediatric) were associated with labelling errors and a significantly higher proportion of paediatric TPNs (25% vs. 15% adult) were associated with incorrect transcriptions (Chi-Square Test; p<0.005). Labelling errors were identified equally by pharmacists (42%) and technicians (48%) with technicians detecting mainly at first check and pharmacists at final check. Transcription errors were identified mainly by technicians (65% vs. 27% pharmacist) at first check. Incorrect drug selection (13%) and calculation errors (9%) were associated with adult and paediatric TPN preparations in the same ratio. One paediatric TPN error detected at first check was considered potentially catastrophic; 31 (5%) errors were considered of major and 38 (6%) of moderate potential consequence. Five errors (2 moderate, 1 minor) were identified during or after administration. Conclusions: While recent UK patient safety initiatives are aimed at improving the safety of injectable medicines in clinical areas, the current study highlights safety problems that exist within pharmacy production units. This could be used in the creation of an error management tool for TPN compounding processes within hospital pharmacies.
Resumo:
Objectives: To assess the impact of a closed-loop electronic prescribing, automated dispensing, barcode patient identification and electronic medication administration record (EMAR) system on prescribing and administration errors, confirmation of patient identity before administration, and staff time. Design, setting and participants: Before-and-after study in a surgical ward of a teaching hospital, involving patients and staff of that ward. Intervention: Closed-loop electronic prescribing, automated dispensing, barcode patient identification and EMAR system. Main outcome measures: Percentage of new medication orders with a prescribing error, percentage of doses with medication administration errors (MAEs) and percentage given without checking patient identity. Time spent prescribing and providing a ward pharmacy service. Nursing time on medication tasks. Results: Prescribing errors were identified in 3.8% of 2450 medication orders pre-intervention and 2.0% of 2353 orders afterwards (p<0.001; χ2 test). MAEs occurred in 7.0% of 1473 non-intravenous doses pre-intervention and 4.3% of 1139 afterwards (p = 0.005; χ2 test). Patient identity was not checked for 82.6% of 1344 doses pre-intervention and 18.9% of 1291 afterwards (p<0.001; χ2 test). Medical staff required 15 s to prescribe a regular inpatient drug pre-intervention and 39 s afterwards (p = 0.03; t test). Time spent providing a ward pharmacy service increased from 68 min to 98 min each weekday (p = 0.001; t test); 22% of drug charts were unavailable pre-intervention. Time per drug administration round decreased from 50 min to 40 min (p = 0.006; t test); nursing time on medication tasks outside of drug rounds increased from 21.1% to 28.7% (p = 0.006; χ2 test). Conclusions: A closed-loop electronic prescribing, dispensing and barcode patient identification system reduced prescribing errors and MAEs, and increased confirmation of patient identity before administration. Time spent on medication-related tasks increased.
Resumo:
The one-dimensional variational assimilation of vertical temperature information in the presence of a boundary-layer capping inversion is studied. For an optimal analysis of the vertical temperature profile, an accurate representation of the background error covariances is essential. The background error covariances are highly flow-dependent due to the variability in the presence, structure and height of the boundary-layer capping inversion. Flow-dependent estimates of the background error covariances are shown by studying the spread in an ensemble of forecasts. A forecast of the temperature profile (used as a background state) may have a significant error in the position of the capping inversion with respect to observations. It is shown that the assimilation of observations may weaken the inversion structure in the analysis if only magnitude errors are accounted for as is the case for traditional data assimilation methods used for operational weather prediction. The positional error is treated explicitly here in a new data assimilation scheme to reduce positional error, in addition to the traditional framework to reduce magnitude error. The distribution of the positional error of the background inversion is estimated for use with the new scheme.
Resumo:
The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) is a World Weather Research Programme project. One of its main objectives is to enhance collaboration on the development of ensemble prediction between operational centers and universities by increasing the availability of ensemble prediction system (EPS) data for research. This study analyzes the prediction of Northern Hemisphere extratropical cyclones by nine different EPSs archived as part of the TIGGE project for the 6-month time period of 1 February 2008–31 July 2008, which included a sample of 774 cyclones. An objective feature tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast verification statistics have then been produced [using the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis as the truth] for cyclone position, intensity, and propagation speed, showing large differences between the different EPSs. The results show that the ECMWF ensemble mean and control have the highest level of skill for all cyclone properties. The Japanese Meteorological Administration (JMA), the National Centers for Environmental Prediction (NCEP), the Met Office (UKMO), and the Canadian Meteorological Centre (CMC) have 1 day less skill for the position of cyclones throughout the forecast range. The relative performance of the different EPSs remains the same for cyclone intensity except for NCEP, which has larger errors than for position. NCEP, the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), and the Australian Bureau of Meteorology (BoM) all have faster intensity error growth in the earlier part of the forecast. They are also very underdispersive and significantly underpredict intensities, perhaps due to the comparatively low spatial resolutions of these EPSs not being able to accurately model the tilted structure essential to cyclone growth and decay. There is very little difference between the levels of skill of the ensemble mean and control for cyclone position, but the ensemble mean provides an advantage over the control for all EPSs except CPTEC in cyclone intensity and there is an advantage for propagation speed for all EPSs. ECMWF and JMA have an excellent spread–skill relationship for cyclone position. The EPSs are all much more underdispersive for cyclone intensity and propagation speed than for position, with ECMWF and CMC performing best for intensity and CMC performing best for propagation speed. ECMWF is the only EPS to consistently overpredict cyclone intensity, although the bias is small. BoM, NCEP, UKMO, and CPTEC significantly underpredict intensity and, interestingly, all the EPSs underpredict the propagation speed, that is, the cyclones move too slowly on average in all EPSs.
Resumo:
Two errors in my paper “Wave functions for the methane molecule” [1] are corrected. They concern my f-harmonic approximation to the wave-function in the equilibrium configuration, for which the final expression for the wave function, the energy lowering, and the density function were all in error.
Resumo:
Radiotelemetry is an important tool used to aid the understanding and conservation of cryptic and rare birds. The two bird species of the family Picathartidae are little-known, secretive, forest-dwelling birds endemic to western and central Africa. In 2005, we conducted a radio-tracking trial of Grey-necked Picathartes Picathartes oreas in the Mbam Minkom Mountain Forest, southern Cameroon, using neck collar (two birds) and tail-mounted (four birds) transmitters to investigate the practicality of radio-tracking Picathartidae. Three birds with tail-mounted transmitters were successfully tracked with the fourth, though not relocated for radio tracking, resighted the following breeding season. Two of these were breeding birds that continued to provision young during radio tracking. One neck-collared bird was found dead three days after transmitter attachment and the other neither relocated nor resighted. As mortality in one bird was potentially caused by the neck collar transmitter we recommend tail-mounted transmitters in future radio-tracking studies of Picathartidae. Home ranges, shown using minimum convex polygon and kernel estimation methods, were generally small (<0.5 km(2)) and centred around breeding sites. A minimum of 60 fixes were found to be sufficient for home range estimation.