98 resultados para Theodore Prodromos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n 5 60 to n 5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean. Azonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel diagnostic tool is presented, based on polar-cap temperature anomalies, for visualizing daily variability of the Arctic stratospheric polar vortex over multiple decades. This visualization illustrates the ubiquity of extended-time-scale recoveries from stratospheric sudden warmings, termed here polar-night jet oscillation (PJO) events. These are characterized by an anomalously warm polar lower stratosphere that persists for several months. Following the initial warming, a cold anomaly forms in the middle stratosphere, as does an anomalously high stratopause, both of which descend while the lower-stratospheric anomaly persists. These events are characterized in four datasets: Microwave Limb Sounder (MLS) temperature observations; the 40-yr ECMWF Re-Analysis (ERA-40) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalyses; and an ensemble of three 150-yr simulations from the Canadian Middle Atmosphere Model. The statistics of PJO events in the model are found to agree very closely with those of the observations and reanalyses. The time scale for the recovery of the polar vortex following sudden warmings correlates strongly with the depth to which the warming initially descends. PJO events occur following roughly half of all major sudden warmings and are associated with an extended period of suppressed wave-activity fluxes entering the polar vortex. They follow vortex splits more frequently than they do vortex displacements. They are also related to weak vortex events as identified by the northern annular mode; in particular, those weak vortex events followed by a PJO event show a stronger tropospheric response. The long time scales, predominantly radiative dynamics, and tropospheric influence of PJO events suggest that they represent an important source of conditional skill in seasonal forecasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that under reasonable assumptions, conservation of angular momentum provides a strong constraint on gravity wave drag feedbacks to radiative perturbations in the middle atmosphere. In the time mean, radiatively induced temperature perturbations above a given altitude z cannot induce changes in zonal mean wind and temperature below z through feedbacks in gravity wave drag alone (assuming an unchanged gravity wave source spectrum). Thus, despite the many uncertainties in the parameterization of gravity wave drag, the role of gravity wave drag in middle-atmosphere climate perturbations may be much more limited than its role in climate itself. This constraint limits the possibilities for downward influence from the mesosphere. In order for a gravity wave drag parameterization to respect the momentum constraint and avoid spurious downward influence, any nonzero parameterized momentum flux at a model lid must be deposited within the model domain, and there must be no zonal mean sponge layer. Examples are provided of how violation of these conditions leads to spurious downward influence. For planetary waves, the momentum constraint does not prohibit downward influence, but it limits the mechanisms by which it can occur: in the time mean, downward influence from a radiative perturbation can only arise through changes in reflection and meridional propagation properties of planetary waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theory of available potential energy (APE) for symmetric circulations, which includes momentum constraints, is presented. The theory is a generalization of the classical theory of APE, which includes only thermal constraints on the circulation. Physically, centrifugal potential energy is included along with gravitational potential energy. The generalization relies on the Hamiltonian structure of the conservative dynamics, although (as with classical APE) it still defines the energetics in a nonconservative framework. It follows that the theory is exact at finite amplitude, has a local form, and can be applied to a variety of fluid models. It is applied here to the f -plane Boussinesq equations. It is shown that, by including momentum constraints, the APE of a symmetrically stable flow is zero, while the energetics of a mechanically driven symmetric circulation properly reflect its causality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is concerned with how the attractor dimension of the two-dimensional Navier–Stokes equations depends on characteristic length scales, including the system integral length scale, the forcing length scale, and the dissipation length scale. Upper bounds on the attractor dimension derived by Constantin, Foias and Temam are analysed. It is shown that the optimal attractor-dimension estimate grows linearly with the domain area (suggestive of extensive chaos), for a sufficiently large domain, if the kinematic viscosity and the amplitude and length scale of the forcing are held fixed. For sufficiently small domain area, a slightly “super-extensive” estimate becomes optimal. In the extensive regime, the attractor-dimension estimate is given by the ratio of the domain area to the square of the dissipation length scale defined, on physical grounds, in terms of the average rate of shear. This dissipation length scale (which is not necessarily the scale at which the energy or enstrophy dissipation takes place) can be identified with the dimension correlation length scale, the square of which is interpreted, according to the concept of extensive chaos, as the area of a subsystem with one degree of freedom. Furthermore, these length scales can be identified with a “minimum length scale” of the flow, which is rigorously deduced from the concept of determining nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal autocorrelations of monthly mean total ozone anomalies over the 35–60°S and 35–60°N latitude bands reveal that anomalies established in the wintertime midlatitude ozone buildup persist (with photochemical decay) until the end of the following autumn, and then are rapidly erased once the next winter's buildup begins. The photochemical decay rate is found to be identical between the two hemispheres. High predictability of ozone through late summer exists based on the late-spring values. In the northern hemisphere, extending the 1979–2001 springtime ozone trend to other months through regression based on the seasonal persistence of anomalies captures the seasonality of the ozone trends remarkably well. In the southern hemisphere, the springtime trend only accounts for part of the summertime trends. There is a strong correlation between the ozone anomalies in northern hemisphere spring and those in the subsequent southern hemisphere spring, but not the converse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correlations between various chemical species simulated by the Canadian Middle Atmosphere Model, a general circulation model with fully interactive chemistry, are considered in order to investigate the general conditions under which compact correlations can be expected to form. At the same time, the analysis serves to validate the model. The results are compared to previous work on this subject, both from theoretical studies and from atmospheric measurements made from space and from aircraft. The results highlight the importance of having a data set with good spatial coverage when working with correlations and provide a background against which the compactness of correlations obtained from atmospheric measurements can be confirmed. It is shown that for long-lived species, distinct correlations are found in the model in the tropics, the extratropics, and the Antarctic winter vortex. Under these conditions, sparse sampling such as arises from occultation instruments is nevertheless suitable to define a chemical correlation within each region even from a single day of measurements, provided a sufficient range of mixing ratio values is sampled. In practice, this means a large vertical extent, though the requirements are less stringent at more poleward latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the stratosphere, chemical tracers are drawn systematically from the equator to the pole. This observed Brewer–Dobson circulation is driven by wave drag, which in the stratosphere arises mainly from the breaking and dissipation of planetary-scale Rossby waves. While the overall sense of the circulation follows from fundamental physical principles, a quantitative theoretical understanding of the connection between wave drag and Lagrangian transport is limited to linear, small-amplitude waves. However, planetary waves in the stratosphere generally grow to a large amplitude and break in a strongly nonlinear fashion. This paper addresses the connection between stratospheric wave drag and Lagrangian transport in the presence of strong nonlinearity, using a mechanistic three-dimensional primitive equations model together with offline particle advection. Attention is deliberately focused on a weak forcing regime, such that sudden warmings do not occur and a quasi-steady state is reached, in order to examine this question in the cleanest possible context. Wave drag is directly linked to the transformed Eulerian mean (TEM) circulation, which is often used as a surrogate for mean Lagrangian motion. The results show that the correspondence between the TEM and mean Lagrangian velocities is quantitatively excellent in regions of linear, nonbreaking waves (i.e., outside the surf zone), where streamlines are not closed. Within the surf zone, where streamlines are closed and meridional particle displacements are large, the agreement between the vertical components of the two velocity fields is still remarkably good, especially wherever particle paths are coherent so that diabatic dispersion is minimized. However, in this region the meridional mean Lagrangian velocity bears little relation to the meridional TEM velocity, and reflects more the kinematics of mixing within and across the edges of the surf zone. The results from the mechanistic model are compared with those from the Canadian Middle Atmosphere Model to test the robustness of the conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview is given of current issues concerning the coupling between the stratosphere and troposphere. The tropopause region, more generally the upper troposphere/lower stratosphere, is the region of direct contact where exchange of material takes place. Dynamical coupling through angular momentum transfer by waves occurs nonlocally, and provides a generally negative torque on the stratosphere which drives an equator-to-pole circulation (i.e., towards the Earth’s axis of rotation). This wave-driven circulation is the principal mechanism for intraseasonal and interannual variability in the extratropical stratosphere. Although such variability is generally dynamical in origin, there are important chemical and radiative feedbacks. The location of the tropopause has implications for radiative forcing of climate, through its effect on the distribution of relatively short-lived greenhouse gases (ozone and water vapour). Some outstanding puzzles in our current understanding are identified. Attention is focused on possible climate sensitivities, and how these may be tested and constrained. Results from the Canadian Middle Atmosphere Model (CMAM), a fully interactive radiative-chemical-dynamical general circulation model, are used to illustrate some of the points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In decaying two-dimensional Navier-Stokes turbulence, Batchelor's similarity hypothesis fails due to the existence of coherent vortices. However, it is shown that decaying two-dimensional turbulence governed by the Harney-Hasegawa-Mima (CHM) equation ∂/∂t (V^2 φ-λ^2 φ)+J(φ,∇^2 φ)=D where D is a damping, is described well by Batchelor's similarity hypothesis for wave numbers k ≪ λ (the so-called AM regime). It is argued that CHM turbulence in the AM regime is a more `ideal' form of two-dimensional turbulence than is Navier-Stokes turbulence itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the linear and nonlinear stability of stationary solutions of the forced two-dimensional Navier-Stokes equations on the domain [0,2π]x[0,2π/α], where α ϵ(0,1], with doubly periodic boundary conditions. For the linear problem we employ the classical energy{enstrophy argument to derive some fundamental properties of unstable eigenmodes. From this it is shown that forces of pure χ2-modes having wavelengths greater than 2π do not give rise to linear instability of the corresponding primary stationary solutions. For the nonlinear problem, we prove the equivalence of nonlinear stability with respect to the energy and enstrophy norms. This equivalence is then applied to derive optimal conditions for nonlinear stability, including both the high-and low-Reynolds-number limits.