32 resultados para Tensor Encoding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data, and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established state-of-the-art methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.