51 resultados para Synthesis and characterization of ST_3 resin
Resumo:
The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 μm to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE10 mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G-band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated, E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32° elevated 35° above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23° and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.
Resumo:
The synthesis and X-ray crystal structure of the MnII,11 complex double salt [Mn2(η1η1µ2-oda)(phen)4(H2O)2][Mn2(η1η1µ2-oda(phen)4(η1-oda)2]·4H2O is reported, together with its catalytic activity towards the disproportionation of H2O2.
Resumo:
[Et3NH]4[Mo8O26] (1) was prepared by reacting triethylamine with either molybdenum trioxide dihydrate or with a solution of ammonium molybdate in aqueous HCl. An aqueous solution of complex 1 reacted with an excess of sodium chloride to give a mixture of [Et3NH]3[NaMo8O26] (2) and [Et3NH]2[Mo6O19] (3). Complex 2 was also formed on reacting sodium molybdate with triethylamine in aqueous HCl. In the reaction of 1 with potassium chloride the nature of the product obtained was critically dependent upon reaction time. After a 5.5 h reflux period a mixture of [Et3NH]3[KMo8O26] (4) and 3 was obtained, whereas upon prolonged reflux (24 h) only K4Mo8O26 · H2O (5) was precipitated. The X-ray crystal structure of 2 shows it to be polymeric, with each Na+ ion sandwiched between two β[Mo8O26]4− ions. Four oxygen atoms on one face of each β[Mo8O26]4− ion are coordinated to a Na+ ion, and four oxygens from the opposite face are bonded to the next Na+ ion in the polymer chain. This produces a zig-zag arrangement of Na+ ions throughout the molecular structure. Spectral, conductivity and voltammetry data are given.
Resumo:
Heterometallic raft clusters have been obtained previously for a variety of metals but none for tin and iridium, and more significantly none to date have had metal groups bonded above the raft plane. We report a hexametallic Ir4Sn2 raft to which a third tin group is attached by a single short IrSn bond and three IrOSn bridges.
Resumo:
Phenylphosphinic acid (HPhPO2H) and phenylphosphonic acid (PhPO3H2) react with a methanolic solution of [Ru2(μ-O2CCH3)4(O2CCH3)2]H·0.7H2O at room temperature to give [Ru2(μ-O2CCH3)4(HPhPO2)2H (1) and [Ru2(μ-O2CCH3)4 (PhPO3H)2]H·H2O (2), respectively. The X-ray crystal structures of 1 and 2 each show the RuRu core to be ligated by four bridging bidentate acetate ligands [RuRu distances: 1 = 2.272(1) Å; 2 = 2.267(2) Å] and two axial phenylphosphinate and phenylphosphonate ligands, respectively. In each complex the individual bimetallic molecules are linked together by a hydrogen ion which bridges the oxygen atoms of neighbouring axial ligands. In 2 the water molecule is also hydrogen-bonded to one of the axial phenylphosphonate groups. Spectroscopic, magnetic and cyclic voltammetric data for the complexes are given.
Resumo:
The clusters [Fe3(CO)11(RCN)] (1: R = Me, C3H5, C6H5, or C6H4-2-Me) have been prepared at low temperature from [Fe3(CO)12] and RCN in the presence of Me3NO. Compounds 1 react essentially quantitatively with a wide range of two-electron donors, L, (viz.: CO, PPh3, P(OMe)3, PPh2H, PPh2Me, PF3, CyNC (Cy = cyclohexyl), P(OEt)3, SbPh3, PBu3, AsPh3, or SnR2 (R = CH(SiMe3)2)) to give [Fe3(CO)11L] (2). In some cases (2), on treatment with Me3NO and then L′ (L′ = a second two-electron donor) yields [Fe3(CO)10LL′] in high yield. The crystal and molecular structures of 1 (L = NCC6H4Me-2) have been determined by a full single crystal structure analysis, and shown to have an axial nitrile coordinated at the unique iron atom, with two CO groups bridging the other two metal atoms.
Resumo:
Alkenyl (CHCH2 or CFCF2) or alkynyl (CCPh) derivatives of trimethyltin are shown to be superior to lithium or magnesium reagents for the synthesis of corresponding mono-organoplatinum(II) species by metathesis (L = SnMe3R +cis-[PtCl2L2]→trans-[PtRClL2]+ SnMe3Cl tertiary phosphine). The reactivity order for SnMe3R is R = CCPh > CFCF2 > CHCH2. This order is also found for oxidative addition of SnMe3R to Pt0 to give cis-[PtRL2(SnMe3)]. When the latter complex (R = CHCH2) reacts with X2 or MeX further oxidative addition occurs exclusively at the platinum centre. Aromatic isonitriles (R′NC)co-ordinate to the platinum and give insertion products trans-[Pt{C(CHCH2)= NR′}ClL2] on heating or carbene complexes with NBunH2. The alkynyl trans-[Pt(CCPh)ClL2] also forms 1 :1 adducts with R′NC and carbene complexes therefrom, but no insertion products. Spectroscopic data for the new complexes are presented.
Resumo:
Four new 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligands, which contain either additional alkyl groups on the pyridine rings or seven-membered aliphatic rings attached to the triazine rings, have been synthesized, and the effects of the additional alkyl substitution in the 4- and 4′-positions of the pyridine rings on their extraction properties with LnIII and AnIII cations in simulated nuclear waste solutions have been studied. The speciation of ligand 13 with some trivalent lanthanide nitrates was elucidated by 1H NMR spectroscopic titrations and ESI-MS. Although 13 formed both 1:1 and 1:2 complexes with LaIII and YIII, only 1:2 complexes were observed with EuIII and CeIII. Quite unexpectedly, both alkyl-substituted ligands 12 and 13 showed lower solubilities in certain diluents than the unsubstituted ligand CyMe4-BTBP. Compared to CyMe4-BTBP, alkyl-substitution was found to decrease the rates of metal-ion extraction of the ligands in both 1-octanol and cyclohexanone. A highly efficient (DAm > 10) and selective (SFAm/Eu > 90) extraction was observed for 12 and 13 in cyclohexanone and for 13 in 1-octanol in the presence of a phase-transfer agent. The implications of these results for the design of improved extractants for radioactive waste treatment are discussed.
Resumo:
The mammalian bradykinin-degrading enzyme aminopeptidase P (AP-P; E. C. 3.4.11.9) is a metal-dependent enzyme and is a member of the peptidase clan MG. AP-P exists as membrane-bound and cytosolic forms, which represent distinct gene products. A partially truncated clone encoding the cytosolic form was obtained from a human pancreatic cDNA library and the 5' region containing the initiating Met was obtained by 5' rapid accumulation of cDNA ends (RACE). The open reading frame encodes a protein of 623 amino acids with a calculated molecular mass of 69,886 Da. The full-length cDNA with a C-terminal hexahistidine tag was expressed in Escherichia coli and COS-1 cells and migrated on SDS-PAGE with a molecular mass of 71 kDa. The expressed cytosolic AP-P hydrolyzed the X-Pro bond of bradykinin and substance P but did not hydrolyze Gly-Pro-hydroxyPro. Hydrolysis of bradykinin was inhibited by 1,10-phenanthroline and by the specific inhibitor of the membrane-bound form of mammalian AP-P, apstatin. Inductively coupled plasma atomic emission spectroscopy of AP-P expressed in E. coli revealed the presence of 1 mol of manganese/mol of protein and insignificant amounts of cobalt, iron, and zinc. The enzymatic activity of AP-P was promoted in the presence of Mn(II), and this activation was increased further by the addition of glutathione. The only other metal ion to cause slight activation of the enzyme was Co(II), with Ca(II), Cu(II), Mg(II), Ni(II), and Zn(II) all being inhibitory. Removal of the metal ion from the protein was achieved by treatment with 1,10-phenanthroline. The metal-free enzyme was reactivated by the addition of Mn(II) and, partially, by Fe(II). Neither Co(II) nor Zn(II) reactivated the metal-free enzyme. On the basis of these data we propose that human cytosolic AP-P is a single metal ion-dependent enzyme and that manganese is most likely the metal ion used in vivo.
Resumo:
New Mo(II) complexes with 2,2'-dipyridylamine (L1), [Mo(CH(3)CN)(eta(3)-C(3)H(5))(CO)(2)(L1)]OTf (C1a) and [{MoBr(eta(3)-C(3)H(5))(CO)(2)(L1)}(2)(4,4'-bipy)](PF(6))(2) (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] (C3), were prepared and characterized by FTIR and (1)H and (13)C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a kappa(2)-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] with L3 acting as a kappa(2)-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations. The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.
Resumo:
Development of an efficient tissue culture protocol in coconut is hampered by numerous technical constraints. Thus a greater understanding of the fundamental aspects of embryogenesis is essential. The role of AINTEGUMENTA-like genes in embryogenesis has been elucidated not only in model plants but also in economically important crops. A coconut gene, CnANT, that encodes two APETALA2 (AP2) domains and a conserved linker region similar to those of the BABY BOOM transcription factor was cloned, characterized, and its tissue specific expression was examined. The full-length cDNA of 1,780 bp contains a 1,425-bp open reading frame that encodes a putative peptide of 474 amino acids. The genomic DNA sequence includes 2,317 bp and consists of nine exons interrupted by eight introns. The exon/intron organization of CnANT is similar to that of homologous genes in other plant species. Analysis of differential tissue expression by real-time polymerase chain reaction indicated that CnANT is expressed more highly in in vitro grown tissues than in other vegetative tissues. Sequence comparison of the genomic sequence of CnANT in different coconut varieties revealed one single nucleotide polymorphism and one indel in the first exon and first intron, respectively, which differentiate the Tall group of trees from Dwarfs. The indel sequence, which can be considered a simple sequence repeats marker, was successfully used to distinguish the Tall and Dwarf groups as well as to develop a marker system, which may be of value in the identification of parental varieties that are used in coconut breeding programs in Sri Lanka.
Resumo:
We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.