43 resultados para Swine manure


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free-choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual-choice Y-tube olfactometry experiments, D. rapae females discriminated between B. brassicae-infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace element contamination is one of the main problems linked to the quality of compost, especially when it is produced from urban wastes, which can lead to high levels of some potentially toxic elements such as Cu, Pb or Zn. In this work, the distribution and bioavailability of five elements (Cu, Zn, Pb, Cr and Ni) were studied in five Spanish composts obtained from different feedstocks (municipal solid waste, garden trimmings, sewage sludge and mixed manure). The five composts showed high total concentrations of these elements, which in some cases limited their commercialization due to legal imperatives. First, a physical fractionation of the composts was performed, and the five elements were determined in each size fraction. Their availability was assessed by several methods of extraction (water, CaCl2–DTPA, the PBET extract, the TCLP extract, and sodium pyrophosphate), and their chemical distribution was assessed using the BCR sequential extraction procedure. The results showed that the finer fractions were enriched with the elements studied, and that Cu, Pb and Zn were the most potentially problematic ones, due to both their high total concentrations and availability. The partition into the BCR fractions was different for each element, but the differences between composts were scarce. Pb was evenly distributed among the four fractions defined in the BCR (soluble, oxidizable, reducible and residual); Cu was mainly found in the oxidizable fraction, linked to organic matter, and Zn was mainly associated to the reducible fraction (iron oxides), while Ni and Cr were mainly present almost exclusively in the residual fraction. It was not possible to establish a univocal relation between trace elements availability and their BCR fractionation. Given the differences existing for the availability and distribution of these elements, which not always were related to their total concentrations, we think that legal limits should consider availability, in order to achieve a more realistic assessment of the risks linked to compost use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Where are the terps in Yorkshire, or for that matter where is any other evidence of exploitation of the wetlands in the early medieval period? Archaeological evidence remains largely elusive for the period between the early fifth and the late ninth century. Among the very few sites in wetland landscapes dated to this period are the settlement of York and the middle Anglo-Saxon bridge at Skerne in the Hull valley. Sites from the free-draining soils adjacent to wetlands are more frequent, and include a monastery (Beverley), settlements (e.g. Nafferton and North Frodingham), cemeteries (e.g. Hornsea, Burton Pidsea, Hessle, North Frodingham, Swine and Stamford Bridge) and various isolated finds (recently summarised in Van de Noort and Davies 1993).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern England, were monitored at hourly interval between January 2010 and December 2011. The relationships between these high-frequency nutrient concentration signals and flow were used to infer changes in nutrient source and dynamics through the annual cycle and each individual storm event, by studying hysteresis patterns. TRP concentrations exhibited strong dilution patterns with increasing flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related inputs from sewage treatment works (STW) for the majority of the year, producing the highest phosphorus concentrations through the spring–summer growing season. At higher river flows, the majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed sediment, much of which was also derived from STW inputs. Therefore, future phosphorus mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only evident during storms in the May of each year, probably relating to manure application to land. The nitrate concentration–flow relationship produced a series of dilution curves, indicating major inputs from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with anticlockwise hysteresis trajectories were observed during the first major storms of the winter period. The simultaneous investigation of high-frequency time series data, concentration–flow relationships and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and innovative approach for providing new insights into nutrient sources and dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free-choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual-choice Y-tube olfactometry experiments, D. rapae females discriminated between B. brassicae-infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: This experiment aimed to determine whether the soil application of organic fertilizers can help the establishment of cacao and whether shade alters its response to fertilizers. Study Design: The 1.6 ha experiment was conducted over a period of one crop year (between April 2007 and March 2008) at the Cocoa Research Institute of Ghana. It involved four cacao genotypes (T 79/501, PA 150, P 30 [POS] and SCA 6), three shade levels (‘light’, ‘medium’ and ‘heavy’) and two fertilizer treatments (‘no fertilizer’, and ‘140 kg/ha of cacao pod husk ash (CPHA) plus poultry manure at 1,800 kg/ha). The experiment was designed as a split-plot with the cacao genotypes as the main plot factor and shade x fertilizer combinations as the sub-plots. Methodology: Gliricidia sepium and plantains (Musa sapientum) were planted in different arrangements to create the three temporary shade regimes for the cacao. Data were collected on temperature and relative humidity of the shade environments, initial soil nutrients, soil moisture, leaf N, P and K+ contents, survival, photo synthesis and growth of test plants. Results: The genotypes P 30 [POS] and SCA 6 showed lower stomatal conductance under non-limiting conditions. In the rainy seasons, plants under light shade had the highest CO2 assimilation rates. However, in the dry season, plants under increased shade recorded greater photosynthetic rates (P = .03). A significant shade x fertilizer interaction (P = .001) on photosynthesis in the dry season showed that heavier shade increases the benefits that young cacao gets from fertilizer application in that season. Conversely, shade should be reduced during the wet seasons to minimize light limitation to assimilation. Conclusion: Under ideal weather conditions young cacao exhibits genetic variability on stomatal conductance. Also, to optimize plant response to fertilizer application shade must be adjusted taking the prevailing weather condition into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to identify key parameters influencing N utilization and develop prediction equations for manure N output (MN), feces N output (FN), and urine N output (UN). Data were obtained under a series of digestibility trials with nonpregnant dry cows fed fresh grass at maintenance level. Grass was cut from 8 different ryegrass swards measured from early to late maturity in 2007 and 2008 (2 primary growth, 3 first regrowth, and 3 second regrowth) and from 2 primary growth early maturity swards in 2009. Each grass was offered to a group of 4 cows and 2 groups were used in each of the 8 swards in 2007 and 2008 for daily measurements over 6 wk; the first group (first 3 wk) and the second group (last 3 wk) assessed early and late maturity grass, respectively. Average values of continuous 3-d data of N intake (NI) and output for individual cows ( = 464) and grass nutrient contents ( = 116) were used in the statistical analysis. Grass N content was positively related to GE and ME contents but negatively related to grass water-soluble carbohydrates (WSC), NDF, and ADF contents ( < 0.01), indicating that accounting for nutrient interrelations is a crucial aspect of N mitigation. Significantly greater ratios of UN:FN, UN:MN, and UN:NI were found with increased grass WSC contents and ratios of N:WSC, N:digestible OM in total DM (DOMD), and N:ME ( < 0.01). Greater NI, animal BW, and grass N contents and lower grass WSC, NDF, ADF, DOMD, and ME concentrations were significantly associated with greater MN, FN, and UN ( < 0.05). The present study highlighted that using grass lower in N and greater in fermentable energy in animals fed solely fresh grass at maintenance level can improve N utilization, reduce N outputs, and shift part of N excretion toward feces rather than urine. These outcomes are highly desirable in mitigation strategies to reduce nitrous oxide emissions from livestock. Equations predicting N output from BW and grass N content explained a similar amount of variability as using NI and grass chemical composition (excluding DOMD and ME), implying that parameters easily measurable in practice could be used for estimating N outputs. In a research environment, where grass DOMD and ME are likely to be available, their use to predict N outputs is highly recommended because they strongly improved of the equations in the current study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated. Here, extracts of cinnamon bark were shown to have potent in vitro anthelmintic properties against the swine nematode Ascaris suum. Analysis of the extract revealed high concentrations of proanthocyanidins (PAC) and trans-cinnamaldehyde (CA). The PAC were subjected to thiolysis and HPLC-MS analysis which demonstrated that they were exclusively procyanidins, had a mean degree of polymerization of 5.2 and 21% of their inter-flavan-3-ol links were A-type linkages. Purification of the PAC revealed that whilst they had activity against A. suum, most of the potency of the extract derived from CA. Trichuris suis and Oesophagostomum dentatum larvae were similarly susceptible to CA. To test whether CA could reduce A. suum infection in pigs in vivo, CA was administered daily in the diet or as a targeted, encapsulated dose. However, infection was not significantly reduced. It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy. Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant-derived proanthocyanidins (PAC) have been promoted as a natural method of improving health and immune function in livestock. It has previously been shown that PAC are effective agonists for activating ruminant γδ T-cells in vitro, however effects on other livestock species are not yet clear. Moreover, the fine structural characteristics of the PAC which contribute to this stimulatory effect have not been elucidated. Here, we demonstrate activation of porcine γδ T-cells by PAC via up-regulation of CD25 (IL-2Rα) and show that 1) activation is dependent on degree of polymerization (DP), with PAC fractions containing polymers with mean DP >6 significantly more effective than fractions with mean DP <6, whilst flavan-3-ol monomers (the constituent monomeric units of PAC) did not induce CD25 expression and 2) both procyanidin and prodelphinidin-type PAC are effective agonists. Furthermore, we show that this effect of PAC is restricted to the γδ T-cell population within porcine peripheral mononuclear cells as significant CD25 up-regulation was not observed in non γδ T-cells, and no activation (via CD80/86 up-regulation) was evident in monocytes. Our results show that dietary PAC may contribute to enhancement of innate immunity in swine via activation of γδ T-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in land management practices may have significant implications for soil microbial communities important in organic P turnover. Soil bacteria can increase plant P availability by excreting phosphatase enzymes which catalyze the hydrolysis of ester-phosphate bonds. Examining the diversity and abundance of alkaline phosphatase gene harboring bacteria may provide valuable insight into alkaline phosphatase production in soils. This study examined the effect of 20 years of no input organic (ORG), organic with composted manure (ORG + M), conventional (CONV) and restored prairie (PRA) management on soil P bioavailability, alkaline phosphatase activity (ALP), and abundance and diversity of ALP gene (phoD) harboring bacteria in soils from the northern Great Plains of Canada. Management system influenced bioavailable P (P < 0.001), but not total P, with the lowest concentrations in the ORG systems and the highest in PRA. Higher rates of ALP were observed in the ORG and ORG + M treatments with a significant negative correlation between bioavailable P and ALP in 2011 (r2 = 0.71; P = 0.03) and 2012 (r2 = 0.51; P = 0.02), suggesting that ALP activity increased under P limiting conditions. The phoD gene abundance was also highest in ORG and ORG + M resulting in a significant positive relationship between bacterial phoD abundance and ALP activity (r2 = 0.71; P = 0.009). Analysis of phoD bacterial community fingerprints showed a higher number of species in CONV compared to ORG and ORG + M, contrary to what was expected considering greater ALP activity under ORG management. In 2012, banding profiles of ORG + M showed fewer phoD bacterial species following the second manure application, although ALP activity is higher than in 2011. This indicates that a few species may be producing more ALP and that quantitative gene analysis was a better indicator of activity than the number of species present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial transformation of phosphorus (P) compounds in soil is largely dependent on soil microbial community function, and is therefore sensitive to anthropogenic disturbances such as fertilization or cropping systems. However, the effect of soil management on the transcription of bacterial genes that encode phosphatases, such as phoD, is largely unknown. This greenhouse study examined the effect of long-term management and P amendment on potential alkaline phosphatase (ALP) activity and phoD gene (DNA) and transcript (RNA) abundance. Soil samples (0–15 cm) were collected from the Glenlea Long-term Rotation near Winnipeg, Manitoba, to compare organic, conventional and prairie management systems. In the greenhouse, pots of soil from each management system were amended with P as either soluble mineral fertilizer or cattle manure and then planted with Italian ryegrass (Lolium multiforum). Soils from each pot were sampled for analysis immediately and after 30 and 106 days. Significant differences among the soil/P treatments were detected for inorganic P, but not the organic P in NaHCO3-extracts. At day 0, ALP activity was similar among the soil/P treatments, but was higher after 30 days for all P amendments in soil from organically managed plots. In contrast, ALP activity in soils under conventional and prairie management responded to increasing rates of manure only, with significant effects from medium and high manure application rates at 30 and 106 days. Differences in ALP activity at 30 days corresponded to the abundance of bacterial phoD genes, which were also significantly higher in soils under organic management. However, this correlation was not significant for transcript abundance. Next-generation sequencing allowed the identification of 199 unique phoD operational taxonomic units (OTUs) from the metagenome (soil DNA) and 35 unique OTUs from the metatranscriptome (soil RNA), indicating that a subset of phoD genes was being transcribed in all soils.