77 resultados para Supplementary runs rules
Resumo:
The guiding principle of compulsory purchase of interests in land in England and Wales is that of fairness, best stated in the words of Lord Justice Scott in Horn v Sunderland Corporation when he said that the owner has “the right to be put, so far as money can do it, in the same position as if his land had not been taken from him”. In many instances, land acquired by compulsion subsequently becomes surplus to the requirements of the acquiring authority. This may be because the intended development scheme was scrapped, or substantially modified, or that after the passage of time the use of the land for which the purchase took place is no longer required. More controversially it may be that for ‘operational reasons’ the acquiring authority knowingly purchased more land than was required for the scheme. Under these circumstances, the Crichel Down Rules (‘the Rules’) require government departments and other statutory bodies to offer back to the former owners or their successors, any land previously so acquired by, or under the threat of, compulsory purchase.
Resumo:
Several studies using ocean–atmosphere general circulation models (GCMs) suggest that the atmospheric component plays a dominant role in the modelled El Niño-Southern Oscillation (ENSO). To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (μ) and the heat flux negative feedback (α), are here analysed in nine AMIP runs of the CMIP3 multimodel dataset. We find that these models generally have improved feedbacks compared to the coupled runs which were analysed in part I of this study. The Bjerknes feedback, μ, is increased in most AMIP runs compared to the coupled run counterparts, and exhibits both positive and negative biases with respect to ERA40. As in the coupled runs, the shortwave and latent heat flux feedbacks are the two dominant components of α in the AMIP runs. We investigate the mechanisms behind these two important feedbacks, in particular focusing on the strong 1997–1998 El Niño. Biases in the shortwave flux feedback, α SW, are the main source of model uncertainty in α. Most models do not successfully represent the negative αSW in the East Pacific, primarily due to an overly strong low-cloud positive feedback in the far eastern Pacific. Biases in the cloud response to dynamical changes dominate the modelled α SW biases, though errors in the large-scale circulation response to sea surface temperature (SST) forcing also play a role. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness which may affect α SW. We further show that the negative latent heat flux feedback, α LH, exhibits less diversity than α SW and is primarily driven by variations in the near-surface specific humidity difference. However, biases in both the near-surface wind speed and humidity response to SST forcing can explain the inter-model αLH differences.
Resumo:
This paper contributes to a fast growing literature which introduces game theory in the analysis of real option investments in a competitive setting. Specifically, in this paper we focus on the issue of multiple equilibria and on the implications that different equilibrium selections may have for the pricing of real options and for subsequent strategic decisions. We present some theoretical results of the necessary conditions to have multiple equilibria and we show under which conditions different tie-breaking rules result in different economic decisions. We then present a numerical exercise using the in formation set obtained on a real estate development in South London. We find that risk aversion reduces option value and this reduction decreases marginally as negative externalities decrease.
Resumo:
This paper summarises an initial report carried out by the Housing Business Research Group, of the University of Reading into Design and Build procurement and a number of research projects undertaken by the national federation of Housing Associations (NFHA), into their members' development programmes. The paper collates existing statistics from these sources and examines the way in which Design and Build procurement can be adapted for the provision of social housing. The paper comments on these changes and questions how risk averting the adopted strategies are in relation to long term housing business management issues arising from the quality of the product produced by the new system.
Resumo:
Providing supplementary food for wild birds is a globally popular past-time; almost half of the households in many developed countries participate and billions of US dollars are spent annually. Although the direct influence of this additional resource on bird survivorship and fecundity has been studied, there is little understanding of the wider ecological consequences of this massive perturbation to (what are usually) urban ecosystems. We investigated the possible effects of wild bird feeding on the size and survivorship of colonies of a widespread arthropod prey species of many small passerine birds, the pea aphid [Acyrthosiphon pisum (Harris); Hemiptera: Aphididae], in suburban gardens in a large town in southern England. We found significantly fewer aphids and shorter colony survival times in colonies exposed to avian predation compared to protected controls in gardens with a bird feeder but no such differences between exposed and protected colonies in gardens that did not feed birds. Our work therefore suggests that supplementary feeding of wild birds in gardens may indirectly influence population sizes and survivorship of their arthropod prey and highlights the need for further research into the potential effects on other species.
Resumo:
The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8–12 Hz) and low beta band (12–20 Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation–execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth.
Resumo:
The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.
Resumo:
Inducing rules from very large datasets is one of the most challenging areas in data mining. Several approaches exist to scaling up classification rule induction to large datasets, namely data reduction and the parallelisation of classification rule induction algorithms. In the area of parallelisation of classification rule induction algorithms most of the work has been concentrated on the Top Down Induction of Decision Trees (TDIDT), also known as the ‘divide and conquer’ approach. However powerful alternative algorithms exist that induce modular rules. Most of these alternative algorithms follow the ‘separate and conquer’ approach of inducing rules, but very little work has been done to make the ‘separate and conquer’ approach scale better on large training data. This paper examines the potential of the recently developed blackboard based J-PMCRI methodology for parallelising modular classification rule induction algorithms that follow the ‘separate and conquer’ approach. A concrete implementation of the methodology is evaluated empirically on very large datasets.
Resumo:
The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and noisy datasets and this has led to the development of pruning methods. Pruning methods use various metrics to truncate decision trees or to eliminate whole rules or single rule terms from a Prism rule set. For decision trees many pre-pruning and postpruning methods exist, however for Prism algorithms only one pre-pruning method has been developed, J-pruning. Recent work with Prism algorithms examined J-pruning in the context of very large datasets and found that the current method does not use its full potential. This paper revisits the J-pruning method for the Prism family of algorithms and develops a new pruning method Jmax-pruning, discusses it in theoretical terms and evaluates it empirically.
Resumo:
The Prism family of algorithms induces modular classification rules in contrast to the Top Down Induction of Decision Trees (TDIDT) approach which induces classification rules in the intermediate form of a tree structure. Both approaches achieve a comparable classification accuracy. However in some cases Prism outperforms TDIDT. For both approaches pre-pruning facilities have been developed in order to prevent the induced classifiers from overfitting on noisy datasets, by cutting rule terms or whole rules or by truncating decision trees according to certain metrics. There have been many pre-pruning mechanisms developed for the TDIDT approach, but for the Prism family the only existing pre-pruning facility is J-pruning. J-pruning not only works on Prism algorithms but also on TDIDT. Although it has been shown that J-pruning produces good results, this work points out that J-pruning does not use its full potential. The original J-pruning facility is examined and the use of a new pre-pruning facility, called Jmax-pruning, is proposed and evaluated empirically. A possible pre-pruning facility for TDIDT based on Jmax-pruning is also discussed.
Resumo:
In order to gain knowledge from large databases, scalable data mining technologies are needed. Data are captured on a large scale and thus databases are increasing at a fast pace. This leads to the utilisation of parallel computing technologies in order to cope with large amounts of data. In the area of classification rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification rule induction is separate and conquer which has only recently been in the focus of parallelisation. This work introduces and evaluates empirically a framework for the parallel induction of classification rules, generated by members of the Prism family of algorithms. All members of the Prism family of algorithms follow the separate and conquer approach.