35 resultados para Submaximal and maximal variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Producing according to enhanced farm animal welfare (FAW) standards increases costs along the livestock value chain, especially for monitoring certified animal friendly products. In the choice between public or private bodies for carrying out and monitoring certification, consumer preferences and trust play a role. We explore this issue by applying logit analysis involving socio-economic and psychometric variables to survey data from Italy. Results identify marked consumer preferences for public bodies and trust in stakeholders a key determinant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use both Granger-causality and instrumental variables (IV) methods to examine the impact of index fund positions on price returns for the main US grains and oilseed futures markets. Our analysis supports earlier conclusions that Granger-causal impacts are generally not discernible. However, market microstructure theory suggests trading impacts should be instantaneous. IV-based tests for contemporaneous causality provide stronger evidence of price impact. We find even stronger evidence that changes in index positions can help predict future changes in aggregate commodity price indices. This result suggests that changes in index investment are in part driven by information which predicts commodity price changes over the coming months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Civil wars are the most common type of large scale violent conflict. They are long, brutal and continue to harm societies long after the shooting stops. Post-conflict countries face extraordinary challenges with respect to development and security. In this paper we examine how countries can recover economically from these devastating conflicts and how international interventions can help to build lasting peace. We revisit the aid and growth debate and confirm that aid does not increase growth in general. However, we find that countries experience increased growth after the end of the war and that aid helps to make the most of this peace dividend. However, aid is only growth enhancing when the violence has stopped, in violent post-war societies aid has no growth enhancing effect. We also find that good governance is robustly correlated with growth, however we cannot confirm that aid increases growth conditional on good policies. We examine various aspects of aid and governance by disaggregating the aid and governance variables. Our analysis does not provide a clear picture of which types of aid and policy should be prioritized. We find little evidence for a growth enhancing effect of UN missions and suggest that case studies may provide better insight into the relationship between security guarantees and economic stabilization.