58 resultados para Sterility in plants.
Resumo:
Sugars in plants, derived from photosynthesis, act as substrates for energy metabolism and the biosynthesis of complex carbohydrates, providing sink tissues with the necessary resources to grow and to develop. In addition, sugars can act as secondary messengers, with the ability to regulate plant growth and development in response to biotic and abiotic stresses. Sugar-signalling networks have the ability to regulate directly the expression of genes and to interact with other signalling pathways. Photosynthate is primarily transported to sink tissues as sucrose via the phloem. Under phosphorus (P) starvation, plants accumulate sugars and starch in their leaves. Increased loading of sucrose to the phloem under P starvation not only functions to relocate carbon resources to the roots, which increases their size relative to the shoot, but also has the potential to initiate sugar-signalling cascades that alter the expression of genes involved in optimizing root biochemistry to acquire soil phosphorus through increased expression and activity of inorganic phosphate transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use. This review looks at the evidence for the involvement of phloem sucrose in co-ordinating plant responses to P starvation at both the transcriptional and physiological levels.
Resumo:
Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.
Resumo:
Insect diversity may be declining even more rapidly than in plants and vertebrates, particularly in areas where indigenous habitats are replaced by an anthropogenic one. The most common component of anthropogenic greenspace is the ornamental lawn. Intensively managed and offering limited habitat opportunities for both plants and insects, lawns are biodiversity poor and ecologically insensitive. An alternative lawn format that positively influences biodiversity and reduces management requirements would be a useful tool in eco-friendly urban greenspace management. In investigating the potential for a forb-only alternative to the grass lawn we sampled both trial grass-free lawn formats and turf lawns to identify any influence that lawn composition and grass-free lawn specific mowing regimes might have on the abundance and diversity of insect families. In addition to the mowing regimes, both the composition and origin of lawn flora were found to significantly influence insect abundance and diversity and these factors rarely interacted. Native-only and mixed origin grass-free lawns hosted greater numbers of adult insects than found in turf and an equivalent diversity of insect families, however the mowing regime applied was distinct from traditional turf lawn management by being substantially less intensive and our results suggest that there is the potential for even greater abundance and diversity via the grass-free format that may offer additional resources to insectivorous garden species such as birds. When the composition of grass-free lawns included native forbs the diversity of insect families was found be sufficiently different from turf lawns to form distinct assemblages and in so doing contribute to beta diversity within urban greenspace. In sum, grass-free lawns may be a useful and aesthetically appropriate tool for adding value to the generally biodiversity poor urban lawnscape.
Resumo:
Natural anti-parasitic compounds in plants such as condensed tannins (CT) have anthelmintic properties against a range of gastrointestinal nematodes, but for other helminths such effects are unexplored. The aim of this study was to assess the effects of CT from three different plant extracts in a model system employing the rat tapeworm, Hymenolepis diminuta, in its intermediate host, Tenebrio molitor. An in vitro study examined infectivity of H. diminuta cysticercoids (excystation success) isolated from infected beetles exposed to different concentrations of CT extracts from pine bark (PB) (Pinus sps), hazelnut pericarp (HN) (Corylus avellana) or white clover flowers (WC) (Trifolium repens), in comparison with the anthelmintic drug praziquantel (positive control). In the in vitro study, praziquantel and CT from all three plant extracts had dose-dependent inhibitory effects on cysticercoid excystation. The HN extract was most effective at inhibiting excystation, followed by PB and WC. An in vivo study was carried out on infected beetles (measured as cysticercoid establishment) fed different doses of PB, HN and praziquantel. There was a highly significant inhibitory effect of HN on cysticercoid development (p = 0.0002). Overall, CT showed a promising anti-cestodal effect against the metacestode stage of H. diminuta.
Resumo:
Background Lipoxygenases (LOXs), a type of non-haem iron-containing dioxygenase, are ubiquitous enzymes in plants and participate in the formation of fruit aroma which is a very important aspect of fruit quality. Amongst the various aroma volatiles, saturated and unsaturated alcohols and aldehydes provide the characteristic aroma of the fruit. These compounds are formed from unsaturated fatty acids through oxidation, pyrolysis and reduction steps. This biosynthetic pathway involves at least four enzymes, including LOX, the enzyme responsible for lipid oxidation. Although some studies have been conducted on the LOX gene family in several species including Arabidopsis, soybean, cucumber and apple, there is no information from pear; and the evolutionary history of this gene family in the Rosaceae is still not resolved. Results In this study we identified 107 LOX homologous genes from five Rosaceous species (Pyrus bretschneideri, Malus × domestica, Fragaria vesca, Prunus mume and Prunus persica); 23 of these sequences were from pear. By using structure analysis, phylogenic analysis and collinearity analysis, we identified variation in gene structure and revealed the phylogenetic evolutionary relationship of this gene family. Expression of certain pear LOX genes during fruit development was verified by analysis of transcriptome data. Conclusions 23 LOX genes were identified in pear and these genes were found to have undergone a duplication 30–45 MYA; most of these 23 genes are functional. Specific gene duplication was found on chromosome4 in the pear genome. Useful information was provided for future research on the evolutionary history and transgenic research on LOX genes.
Resumo:
The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. We evaluated the effect of P. indica on Fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilised soil-free medium or in a non-sterilised mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real-time polymerase chain reaction (qPCR). The ratio of Fusarium DNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. P. indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of Fusarium DNA in root systems increased in the absence of P. indica but was static in plants co-inoculated with P. indica.
Resumo:
Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.
Resumo:
Background Somatic embryogenesis (SE) in plants is a process by which embryos are generated directly from somatic cells, rather than from the fused products of male and female gametes. Despite the detailed expression analysis of several somatic-to-embryonic marker genes, a comprehensive understanding of SE at a molecular level is still lacking. The present study was designed to generate high resolution transcriptome datasets for early SE providing the way for future research to understand the underlying molecular mechanisms that regulate this process. We sequenced Arabidopsis thaliana somatic embryos collected from three distinct developmental time-points (5, 10 and 15 d after in vitro culture) using the Illumina HiSeq 2000 platform. Results This study yielded a total of 426,001,826 sequence reads mapped to 26,520 genes in the A. thaliana reference genome. Analysis of embryonic cultures after 5 and 10 d showed differential expression of 1,195 genes; these included 778 genes that were more highly expressed after 5 d as compared to 10 d. Moreover, 1,718 genes were differentially expressed in embryonic cultures between 10 and 15 d. Our data also showed at least eight different expression patterns during early SE; the majority of genes are transcriptionally more active in embryos after 5 d. Comparison of transcriptomes derived from somatic embryos and leaf tissues revealed that at least 4,951 genes are transcriptionally more active in embryos than in the leaf; increased expression of genes involved in DNA cytosine methylation and histone deacetylation were noted in embryogenic tissues. In silico expression analysis based on microarray data found that approximately 5% of these genes are transcriptionally more active in somatic embryos than in actively dividing callus and non-dividing leaf tissues. Moreover, this identified 49 genes expressed at a higher level in somatic embryos than in other tissues. This included several genes with unknown function, as well as others related to oxidative and osmotic stress, and auxin signalling. Conclusions The transcriptome information provided here will form the foundation for future research on genetic and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; the genes more highly expressed in somatic embryos than in vegetative tissues can be considered as potential candidates to validate these networks.
Resumo:
Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially pollinator-dependent crop, faba bean (Vicia faba L.), insect pollination would elicit similar yield recovery following heat stress. We exposed potted faba bean plants to heat stress for 5 days during floral development and anthesis. Temperature treatments were representative of heat waves projected in the UK for the period 2021-2050 and onwards. Following temperature treatments, plants were distributed in flight cages and either pollinated by domesticated Bombus terrestris colonies or received no insect pollination. Yield loss due to heat stress at 30°C was greater in plants excluded from pollinators (15%) compared to those with bumblebee pollination (2.5%). Thus, the pollinator dependency of faba bean yield was 16% at control temperatures (18 to 26°C) and extreme stress (34°C), but was 53% following intermediate heat stress at 30°C. These findings provide the first evidence that the pollinator dependency of crops can be modified by heat stress, and suggest that insect pollination may become more important in crop production as the probability of heat waves increases.
Resumo:
New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.
Resumo:
Botrytis species are generally considered to be aggressive, necrotrophic plant pathogens. By contrast to this general perception, however, Botrytis species could frequently be isolated from the interior of multiple tissues in apparently healthy hosts of many species. Infection frequencies reached 50% of samples or more, but were commonly less, and cryptic infections were rare or absent in some plant species. Prevalence varied substantially from year to year and from tissue to tissue, but some host species routinely had high prevalence. The same genotype was found to occur throughout a host, representing mycelial spread. B. cinerea and B. pseudocinerea are the species that most commonly occur as cryptic infections, but phylogenetically distant isolates of Botrytis were also detected, one of which does not correspond to previously described species. Sporulation and visible damage occurred only when infected tissues were stressed, or became mature or senescent. There was no evidence of cryptic infection having a deleterious effect on growth of the host, and prevalence was probably greater in plants grown in high light conditions. Isolates from cryptic infections were often capable of causing disease (to varying extents) when spore suspensions were inoculated onto their own host as well as on distinct host species, arguing against co-adaptation between cryptic isolates and their hosts. These data collectively suggest that several Botrytis species, including the most notorious pathogenic species, exist frequently in cryptic form to an extent that has thus far largely been neglected, and do not need to cause disease on healthy hosts in order to complete their life-cycles.
Resumo:
Public concern over impacts of chemicals in plant and animal production on health and the environment has led to increased demand for organic produce, which is usually promoted and often perceived as containing fewer contaminants, more nutrients, and being positive for the environment. These benefits are difficult to quantify, and potential environmental impacts on such benefits have not been widely studied. This book addresses these key points, examining factors such as the role of certain nutrients in prevention and promotion of chronic disease, potential health benefits of bioactive compounds in plants, the prevalence of food-borne pesticides and pathogens and how both local and global environmental factors may affect any differences between organic and conventionally produced food. This book is an essential resource for researchers and students in human health and nutrition, environmental science, agriculture and organic farming. Main Contents 1. Organic farming and food systems: definitions and key characteristics. 2. The health benefits of n-3 fatty acids and their concentrations in organic and conventional animal-derived foods. 3. Environmental impacts on n-3 content of foods from ruminant animals. 4. Health benefits and selenium content of organic vs conventional foods. 5. Environmental impacts concerning the selenium content of foods. 6. Contaminants in organic and conventional food: the missing link between contaminant levels and health effects. 7. Mycotoxins in organic and conventional foods and effects of the environment. 8. Human pathogens in organic and conventional foods and effects of the environment. 9. What does consumer science tell us about organic foods? 10. The beneficial effects of dietary flavonoids: sources, bioavailability and biological functions. 11. Environmental regulation of flavonoid biosynthesis. 12. Nitrates in the human diet. 13. Impacts of environment and management on nitrate in vegetables and water. 14. Effects of the environment on the nutritional quality and safety of organically produced foods: Round-up and summary.
Resumo:
This chapter describes the present status and future prospects for transgenic (genetically modified) crops. It concentrates on the most recent data obtained from patent databases and field trial applications, as well as the usual scientific literature. By these means, it is possible to obtain a useful perspective into future commercial products and international trends. The various research areas are subdivided on the basis of those associated with input (agronomic) traits and those concerned with output (e.g., food quality) characteristics. Among the former group are new methods of improving stress resistance, and among the latter are many examples of producing pharmaceutical compounds in plants.
Resumo:
Germin is a hydrogen peroxide generating oxalate oxidase with extreme thermal stability; it is involved in the defense against biotic and abiotic stress in plants. The structure, determined at 1.6 A resolution, comprises beta-jellyroll monomers locked into a homohexamer (a trimer of dimers), with extensive surface burial accounting for its remarkable stability. The germin dimer is structurally equivalent to the monomer of the 7S seed storage proteins (vicilins), indicating evolution from a common ancestral protein. A single manganese ion is bound per germin monomer by ligands similar to those of manganese superoxide dismutase (MnSOD). Germin is also shown to have SOD activity and we propose that the defense against extracellular superoxide radicals is an important additional role for germin and related proteins.
Resumo:
It has been successfully demonstrated, using epidermis explants of sugar beet (Beta vulgaris L.), that stomatal guard cells retain full totipotent capacity. Despite having one of the highest degrees of morphological adaptation and a unique physiological specialization, it is possible to induce a re-expression of full (embryogenic) genetic potential in these cells in situ by reversing their highly differentiated nature to produce regenerated plants via a callus stage. The importance of these findings both to stomatal research and to our understanding of cytodifferentiation in plants is discussed.