107 resultados para Statistical count
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture-recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture-recapture models. Alternative methods, still under the capture-recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture-recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao's lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates-in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximate to 141 thousand years ago (Kya), an exit out-of-Africa approximate to 51 Kya, and a recent colonization of the Americas approximate to 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.
Resumo:
Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.
Resumo:
This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so. that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.
Resumo:
A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.
Resumo:
From a statistician's standpoint, the interesting kind of isomorphism for fractional factorial designs depends on the statistical application. Combinatorially isomorphic fractional factorial designs may have different statistical properties when factors are quantitative. This idea is illustrated by using Latin squares of order 3 to obtain fractions of the 3(3) factorial. design in 18 runs.
Resumo:
An important element of the developing field of proteomics is to understand protein-protein interactions and other functional links amongst genes. Across-species correlation methods for detecting functional links work on the premise that functionally linked proteins will tend to show a common pattern of presence and absence across a range of genomes. We describe a maximum likelihood statistical model for predicting functional gene linkages. The method detects independent instances of the correlated gain or loss of pairs of proteins on phylogenetic trees, reducing the high rates of false positives observed in conventional across-species methods that do not explicitly incorporate a phylogeny. We show, in a dataset of 10,551 protein pairs, that the phylogenetic method improves by up to 35% on across-species analyses at identifying known functionally linked proteins. The method shows that protein pairs with at least two to three correlated events of gain or loss are almost certainly functionally linked. Contingent evolution, in which one gene's presence or absence depends upon the presence of another, can also be detected phylogenetically, and may identify genes whose functional significance depends upon its interaction with other genes. Incorporating phylogenetic information improves the prediction of functional linkages. The improvement derives from having a lower rate of false positives and from detecting trends that across-species analyses miss. Phylogenetic methods can easily be incorporated into the screening of large-scale bioinformatics datasets to identify sets of protein links and to characterise gene networks.
Resumo:
Background: MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results: A large dataset comprising MHC-peptide structural complexes was created by remodelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion: The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.
Resumo:
In designing modern office buildings, building spaces are frequently zoned by introducing internal partitioning, which may have a significant influence on the room air environment. This internal partitioning was studied by means of model test, numerical simulation, and statistical analysis as the final stage. In this paper, the results produced from the statistical analysis are summarized and presented.
Resumo:
The application of prediction theories has been widely practised for many years in many industries such as manufacturing, defence and aerospace. Although these theories are not new, their application has not been widely used within the building services industry. Collectively, the building services industry should take a deeper look at these approaches in comparison with the traditional deterministic approaches currently being practised. By extending the application into this industry, this paper seeks to provide the industry with an overview of how simplified stochastic modelling coupled with availability and reliability predictions using historical data compiled from various sources could enhance the quality of building services systems.
Resumo:
A means of assessing, monitoring and controlling aggregate emissions from multi-instrument Emissions Trading Schemes is proposed. The approach allows contributions from different instruments with different forms of emissions targets to be integrated. Where Emissions Trading Schemes are helping meet specific national targets, the approach allows the entry requirements of new participants to be calculated and set at a level that will achieve these targets. The approach is multi-levelled, and may be extended downwards to support pooling of participants within instruments, or upwards to embed Emissions Trading Schemes within a wider suite of policies and measures with hard and soft targets. Aggregate emissions from each instrument are treated stochastically. Emissions from the scheme as a whole are then the joint probability distribution formed by integrating the emissions from its instruments. Because a Bayesian approach is adopted, qualitative and semi-qualitative data from expert opinion can be used where quantitative data is not currently available, or is incomplete. This approach helps government retain sufficient control over emissions trading scheme targets to allow them to meet their emissions reduction obligations, while minimising the need for retrospectively adjusting existing participants’ conditions of entry. This maintains participant confidence, while providing the necessary policy levers for good governance.
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
Ranald Roderick Macdonald (1945-2007) was an important contributor to mathematical psychology in the UK, as a referee and action editor for British Journal of Mathematical and Statistical Psychology and as a participant and organizer at the British Psychological Society's Mathematics, statistics and computing section meetings. This appreciation argues that his most important contribution was to the foundations of significance testing, where his concern about what information was relevant in interpreting the results of significance tests led him to be a persuasive advocate for the 'Weak Fisherian' form of hypothesis testing.
Resumo:
A recent report in Consciousness and Cognition provided evidence from a study of the rubber hand illusion (RHI) that supports the multisensory principle of inverse effectiveness (PoIE). I describe two methods of assessing the principle of inverse effectiveness ('a priori' and 'post-hoc'), and discuss how the post-hoc method is affected by the statistical artefact of,regression towards the mean'. I identify several cases where this artefact may have affected particular conclusions about the PoIE, and relate these to the historical origins of 'regression towards the mean'. Although the conclusions of the recent report may not have been grossly affected, some of the inferential statistics were almost certainly biased by the methods used. I conclude that, unless such artefacts are fully dealt with in the future, and unless the statistical methods for assessing the PoIE evolve, strong evidence in support of the PoIE will remain lacking. (C) 2009 Elsevier Inc. All rights reserved.