40 resultados para Spring Break


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toward the ultimate goal of replacing field-based evaluation of seasonal growth habit, we describe the design and validation of a multiplex polymerase chain reaction assay diagnostic for allelic status at the barley (Hordeum vulgare ssp. vulgare L.) vernalization locus, VRN-H1 By assaying for the presence of all known insertion–deletion polymorphisms thought to be responsible for the difference between spring and winter alleles, this assay directly tests for the presence of functional polymorphism at VRN-H1 Four of the nine previously recognized VRN-H1 haplotypes (including both winter alleles) give unique profiles using this assay. The remaining five spring haplotypes share a single profile, indicative of function-altering deletions spanning, or adjacent to, the putative “vernalization critical” region of intron 1. When used in conjunction with a previously published PCR-based assay diagnostic for alleles at VRN-H2, it was possible to predict growth habit in all the 100 contemporary UK spring and winter lines analyzed in this study. This assay is likely to find application in instances when seasonal growth habit needs to be determined without the time and cost of phenotypic assessment and during marker-assisted selection using conventional and multicross population analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonhomologous repair of double-stranded breaks, although fundamental to the maintenance of genomic integrity in all eukaryotes, has received little attention as to its evolutionary consequences in the generation and selection of phenotypic diversity. Here we document the role of illegitimate recombination in the creation of novel alleles in VRN1 orthologs selected to confer adaptation to annual cropping systems in barley and wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-deficit is a severe abiotic stress and major constraint to wheat productivity with effect on plant growth and development. The objective of this study was to characterize drought tolerant and susceptible spring wheat cultivars on the basis of physiological and yield attributes. The experiment was comprised of two irrigation regimes i.e. irrigated and 65% drought stress and ten wheat cultivars viz. Anmol, Moomal, Sarsabz, Bhittai, Pavon, SKD-1, TD-1, Kiran, Marvi and Mehran. Results indicated significant effect of water stress on stomatal dimension, stomatal conductance, relative leaf water content and grain yield with no effect on stomatal density. The irrigation × cultivars interaction was non-significant for grain yield only. Cultivars like Anmol, Moomal, Bhittai, Sarsabz proved to be drought tolerant with smaller stomatal dimensions, less stomatal conductance and more relative water content under water stress and produced higher grain yield. While decrease in relative water contents and grain yield, and increase in stomatal attributes was observed in drought susceptible cultivars such as Marvi, TD-1 and SKD-1 hence proved to be drought susceptible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global climatology (1979–2012) from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) shows distributions and seasonal evolution of upper tropospheric jets and their relationships to the stratospheric subvortex and multiple tropopauses. The overall climatological patterns of upper tropospheric jets confirm those seen in previous studies, indicating accurate representation of jet stream dynamics in MERRA. The analysis shows a Northern Hemisphere (NH) upper tropospheric jet stretching nearly zonally from the mid-Atlantic across Africa and Asia. In winter–spring, this jet splits over the eastern Pacific, merges again over eastern North America, and then shifts poleward over the North Atlantic. The jets associated with tropical circulations are also captured, with upper tropospheric westerlies demarking cyclonic flow downstream from the Australian and Asian monsoon anticyclones and associated easterly jets. Multiple tropopauses associated with the thermal tropopause “break” commonly extend poleward from the subtropical upper tropospheric jet. In Southern Hemisphere (SH) summer, the tropopause break, along with a poleward-stretching secondary tropopause, often occurs across the tropical westerly jet downstream of the Australian monsoon region. SH high-latitude multiple tropopauses, nearly ubiquitous in June–July, are associated with the unique polar winter thermal structure. High-latitude multiple tropopauses in NH fall–winter are, however, sometimes associated with poleward-shifted upper tropospheric jets. The SH subvortex jet extends down near the level of the subtropical jet core in winter and spring. Most SH subvortex jets merge with an upper tropospheric jet between May and December; although much less persistent than in the SH, merged NH subvortex jets are common between November and April.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed dormancy induction and alleviation in the winter-flowering moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. Outdoor and laboratory experiments simulating different seasonal temperatures, seasonal durations, and temperature fluctuations; the presence of light during different seasons; and intermittent drying (during the summer period) over several ‘years’ investigated the importance of these factors in germination. Warm summer-like temperatures (20°C) were necessary for germination at subsequent cooler autumn-like temperatures (greatest at 15°C in G. nivalis and 10°C in N. pseudonarcissus). As the warm temperature duration increased so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5°C cooler. In summary, continuous hydration of seeds of both species during warm summer-like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis), and desiccation (N. pseudonarcissus) increase dormancy while light inhibits germination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The school has been identified as a key setting to promote physical activity. The purpose of this study was to evaluate the effect of a classroom-based activity break on in-school step counts of primary school children. Data for 90 children (49 boys, 41 girls, 9.3 ± 1.4 years) from three Irish primary schools is presented. In each school one class was randomly assigned as the intervention group and another as controls. Children's step counts were measured for five consecutive days during school hours at baseline and follow-up. Teachers of the intervention classes led a 10 min activity break in the classroom each day (Bizzy Break!). Mean daily in-school steps for the intervention at baseline and follow-up were 5351 and 5054. Corresponding values for the control group were 5469 and 4246. There was a significant difference in the change in daily steps from baseline to follow-up between groups (p < .05). There was no evidence that girls and boys responded differently to the intervention (p > .05). Children participating in a daily 10 min classroom-based activity break undertake more physical activity during school hours than controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One Norwegian and one UK spring wheat cultivar, Bjarne and Cadenza, respectively, were grown in climate chambers to investigate the effects of lower to moderate temperatures during grain filling on the gluten quality. Two experiments were carried out with weekly fertilization until anthesis, while post-anthesis fertilization was applied in a third experiment. The proportions of different gluten proteins were affected by temperature in a similar manner for both cultivars when grown without post-anthesis fertilization. However, whereas low temperature strongly decreased %UPP for Cadenza, Bjarne had high %UPP at all temperature regimes. The results indicated that the assembly of glutenin polymers in Bjarne was less sensitive to variation in temperature than in Cadenza. Thus, our results suggested that the temperature influenced the proportion of different gluten proteins in both cultivars, while its effects on the assembly of the glutenin polymers were cultivar dependent. The duration of grain filling was longer at the lower temperatures, and this was associated with increased grain weight. Temperature had little effect on the amount of protein accumulated per grain, thus the proportion of proteins was strongly decreased at lower temperatures. This was to some extent, but not fully counteracted by post-anthesis fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantify the effect of the snow-albedo feedback on Swiss spring temperature trends using daily temperature and snow depth measurements from six station pairs for the period 1961–2011. We show that the daily mean 2-m temperature of a spring day without snow cover is on average 0.4 °C warmer than one with snow cover at the same location. This estimate is comparable with estimates from climate modelling studies. Caused by the decreases in snow pack, the snow-albedo feedback amplifies observed temperature trends in spring. The influence is small and confined to areas around the upward-moving snow line in spring and early summer. For the 1961–2011 period, the related temperature trend increases are in the order of 3–7 % of the total observed trend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually supressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade.