51 resultados para Spores.
Resumo:
Buddenbrockia pluinatellae is an active, muscular, worm-shaped parasite of freshwater bryozoans. This rare and enigmatic animal has been assigned to the Myxozoa on the basis of 18S ribosomal DNA sequences and the presence of malacosporean spores. Here we report cloning of four homologous protein-coding genes from Buddenbrockia worms, the putatively conspecific sac-shaped parasite originally described as Tetracapsula bryozoides and the related sac-shaped parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish. Analyses are consistent with the hypothesis that Buddenbrockia is indeed a malacosporean myxozoan, but do not provide support for conspecificity with either T. bryozoides or T. bryosalmonae. Implications for the evolution of worm-like body plans in the Myxozoa are discussed.
A qualitative host-pathogen interaction in the Theobroma cacao-Moniliophthora perniciosa pathosystem
Resumo:
The aim of this study was to test whether resistance of clones of Theobroma cacao ( cocoa) varied between isolates of Moniliophthora (formerly Crinipellis) perniciosa, the cause of witches' broom disease. Developing buds of vegetatively propagated T. cacao grown in greenhouses in the UK were inoculated with 16 000 spores of M. perniciosa per meristem in water, under conditions where water condensed on the inoculated shoot for at least 12 h after inoculation. The proportion of successful inoculations varied between clones and was inversely correlated with time to symptom production or broom formation. A specific interaction was demonstrated among three single-spore isolates of M. perniciosa and the clone Scavina 6 (SCA 6) and a variety of susceptible clones. Isolates Castenhal-I and APC3 were equally likely to infect SCA 6 and the other clones, but isolate Gran Couva A9 never infected SCA 6, although it was as virulent on the other clones. The interaction was maintained when the wetness period was extended to 70 h. Offspring of SCA 6 x Amelonado matings were all susceptible to both Castenhal-I and GC-A5, with no evidence of greater variability in susceptibility to GC-A5 than Castanhal-I. This suggests recessive inheritance of a single homozygous factor conferring resistance to GC-A5, from SCA 6. The progenies were slightly more susceptible to Castanhal-I than GC-A5. The implications for managing the disease are discussed.
Resumo:
Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.
Resumo:
Spores of the hyperparasite Acremonium alternatum reduced powdery mildew infection by Leveillula taurica on greenhouse tomato. The effect was slightly increased when spores were applied killed, and therefore not due to direct parasitism. The effect was systemic, protecting untreated leaves above the treated ones. Spores killed by heat had more effect than when killed by UV, so the effect was presumably due to induction of host resistance by substances released when cells were heat killed. The size of the effect depended upon leaf age and level of infection. Effects on primary infection and expansion of successful infections appear to be under independent control.
Resumo:
A detailed spore investigation of spore release and dispersal from an isolated colony of Phascum cuspidatum Hedw. indicated that approximately 98% of the spores originally present remained within the colony. The spatial distribution of colonies of P.cuspidatum and Pottia truncata (Hedw.) Fürer. in relation to those of the previous year was investigated by mapping the occurrence of colonies in five permanent quadrats for each species during two successive years. Phascum cuspidatum reoccurred in three quadrats during the second year, and P. truncata in only one, in the latter case apparently due to invasion by other mosses, principally Barbula hornschuchiana Schultz. A substantial proportion of the second year colonies overlapped in position with the first year colonies, particularly in P.cuspidatum. The results are discussed in relation to data on spore dispersal and other aspects of the life-history of these annual or short-lived shuttle mosses.
Resumo:
Proliferative kidney disease (PKD) is an emerging disease of salmonid fishes. It is provoked by temperature and caused by infective spores of the myxozoan parasite Tetracapsuloides bryosalmonae, which develops in freshwater bryozoans. We investigated the link between PKD and temperature by determining whether temperature influences the proliferation of T bryosalmonae in the bryozoan host Fredericella sultana. Herein we show that increased temperatures drive the proliferation of T bryosalmonae in bryozoans by provoking, accelerating and prolonging the production of infective spores from cryptic stages. Based on these results we predict that PKD outbreaks will increase further in magnitude and severity in wild and farmed salmonids as a result of climate-driven enhanced proliferation in invertebrate hosts, and urge for early implementation of management strategies to reduce future salmonid declines.
Resumo:
The ultrastructure of a new microsporidian species Microgemmia vivaresi n. sp. causing liver cell xenoma formation in sea scorpions, Taurulus bubalis, is described. Stages of merogony, sporogony, and sporogenesis are mixed in the central cytoplasm of developing xenomas. All stages have unpaired nuclei. Uninucleate and multinucleate meronts lie within vacuoles formed from host endoplasmic reticulum and divide by binary or multiple fission. Sporonts, no longer in vacuoles, deposit plaques of surface coat on the plasma membrane that cause the surface to pucker. Division occurs at the Puckered stage into sporoblast mother cells, on which plaques join up to complete the surface coat. A final binary fission gives rise to sporoblasts. A dense globule, thought to be involved in polar tube synthesis, is gradually dispersed during spore maturation. Spores are broadly ovoid, have a large posterior vacuole, and measure 3.6 mu m x 2.1 pint (fresh). The polar tube has a short wide anterior section that constricts abruptly, then runs posteriad to coil about eight times around the posterior vacuole with granular contents. The polaroplast has up to 40 membranes arranged in pairs mostly attached to the wide region of the polar tube and directed posteriorty around a cytoplasm of a coarsely granular appearance. The species is placed alongside the type species Microgemmia hepaticus Ralphs and Matthews 1986 within the family Tetramicridae, which is transferred from the class Dihaplophasea to the class Haplophasea, as there is no evidence for the occurrence of a diplokaryotic phase.
Resumo:
Artificial pod inoculation was used to compare the relative aggressiveness of seven Colombian isolates of Moniliophthora roreri (the causal agent of moniliasis or frosty pod disease), representing four major genetic groupings of the pathogen in cacao (cocoa), when applied to five diverse cacao genotypes (ICS-1, ICS-95, TSH-565, SCC-61 and CAP-34) at La Suiza Experimental Farm, Santander Department, Colombia. The following variables were evaluated 9 weeks after inoculation of 2- to 3-month-old pods with spore suspensions (1.2 x 10(5) spores mL(-1)): (i) disease incidence (DI); (ii) external severity (ES); and (iii) internal severity (IS). IS was found to be of greatest value in classifying the reaction of the host genotype against M. roreri. Genetic variation reported between isolates and cacao genotypes was not matched by similar diversity in their aggressiveness. All isolates were generally highly aggressive against most cacao genotypes, with only two isolates showing reduced IS and ES reactions. There was considerable variation between clones in the IS and ES scores, but one cultivated clone (ICS-95) displayed a significant level of resistance against all seven isolates. This clone may be useful in cacao breeding initiatives for resistance to moniliasis of cacao.
Resumo:
Myxozoans, belonging to the recently described Class Malacosporea, parasitise freshwater bryozoans during at least part of their life cycle, but no complete malacosporean life cycle is known to date. One of the 2 described malacosporeans is Tetracapsuloides bryosalmonae, the causative agent of salmonid proliferative kidney disease. The other is Buddenbrockia plumatellae, so far only found in freshwater bryozoans. Our investigations evaluated malacosporean life cycles, focusing on transmission from fish to bryozoan and from bryozoan to bryozoan. We exposed bryozoans to possible infection from: stages of T bryosalmonae in fish kidney and released in fish urine; spores of T bryosalmonae that had developed in bryozoan hosts; and spores and sac stages of B. plumatellae that had developed in bryozoans. Infections were never observed by microscopic examination of post-exposure, cultured bryozoans and none were detected by PCR after culture. Our consistent negative results are compelling: trials incorporated a broad range of parasite stages and potential hosts, and failure of transmission across trials cannot be ascribed to low spore concentrations or immature infective stages. The absence of evidence for bryozoan to bryozoan transmissions for both malacosporeans strongly indicates that such transmission is precluded in malacosporean life cycles. Overall, our results imply that there may be another malacosporean host which remains unidentified, although transmission from fish to bryozoans requires further investigation. However, the highly clonal life history of freshwater bryozoans is likely to allow both long-term persistence and spread of infection within bryozoan populations, precluding the requirement for regular transmission from an alternate host.
Resumo:
A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.
Resumo:
Observations on clumps of Phascum cuspidatum during the summer and autumn indicated that this species is at least a short-lived perennial, as young shoots develop from old, brown shoots persisting from the previous winter. No young shoots arising by vegetative propagation were recorded in Pottia truncata. Rhizoid tubers were observed in this species, but only in one of the many clumps examined. Spores of both species germinated freely in culture, but when spores were planted in the field young gametophytes developed inconsistently in P. truncata and never in P. cuspidatum. An investigation of spore deposition around an isolated clump of P. truncata suggested that 67% of the spores released were deposited within the clump, and 70% within 2m. Electrophoretic studies indicated limited genetic variation within two populations of each species, with no genotypes in common between the populations. No genetic variation was recorded between gametophytes within individual clumps of either species, nor between sporophytes and their maternal gametophytes, suggesting a high incidence of inbreeding in these monoecious mosses. (author abst.)
Resumo:
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.
Resumo:
To find the range of pressure required for effective high-pressure inactivation of bacterial spores and to investigate the role of alpha/beta-type small, acid-soluble proteins (SASP) in spores under pressure treatment, mild heat was combined with pressure (room temperature to 65 degrees C and 100 to 500 MPa) and applied to wild-type and SASP-alpha(-/)beta(-) Bacillus subtilis spores. On the one hand, more than 4 log units of wild-type spores were reduced after pressurization at 100 to 500 MPa and 65 degrees C, On the other hand, the number of surviving mutant spores decreased by 2 log units at 100 MPa and by more than 5 log units at 500 MPa. At 500 MPa and 65 degrees C, both wild-type and mutant spore survivor counts were reduced by 5 log units. Interestingly, pressures of 100, 200, and 300 MPa at 65 degrees C inactivated wild-type SASP-alpha(+)/beta(+) spores more than mutant SASP-alpha(-)/beta(-) spores, and this was attributed to less pressure-induced germination in SASP-alpha(-)/beta(-) spores than in wild-type SASP-alpha(+)/beta(+) spores. However, there was no difference in the pressure resistance between SASP-alpha(+)/beta(+) and SASP-alpha(-)/beta(-) spores at 100 MPa and ambient temperature (approximately 22 degrees C) for 30 min. A combination of high pressure and high temperature is very effective for inducing spore germination, and then inactivation of the germinated spore occurs because of the heat treatment. This study showed that alpha/beta-type SASP play a role in spore inactivation by increasing spore germination under 100 to 300 MPa at high temperature.
Resumo:
Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real-time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore-trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain-splashed conidia rather than putative ascospores.
Resumo:
Small propagules like pollen or fungal spores may be dispersed by the wind over distances of hundreds or thousands of kilometres,even though the median dispersal may be only a few metres. Such long-distance dispersal is a stochastic event which may be exceptionally important in shaping a population. It has been found repeatedly in field studies that subpopulations of wind-dispersed fungal pathogens virulent on cultivars with newly introduced, effective resistance genes are dominated by one or very few genotypes. The role of propagule dispersal distributions with distinct behaviour at long distances in generating this characteristic population structure was studied by computer simulation of dispersal of clonal organisms in a heterogeneous environment with fields of unselective and selective hosts. Power-law distributions generated founder events in which new, virulent genotypes rapidly colonized fields of resistant crop varieties and subsequently dominated the pathogen population on both selective and unselective varieties, in agreement with data on rust and powdery mildew fungi. An exponential dispersal function, with extremely rare dispersal over long distances, resulted in slower colonization of resistant varieties by virulent pathogens or even no colonization if the distance between susceptible source and resistant target fields was sufficiently large. The founder events resulting from long-distance dispersal were highly stochastic and exact quantitative prediction of genotype frequencies will therefore always be difficult.