67 resultados para Spatiotemporal Chaos
Resumo:
The emergence of mental states from neural states by partitioning the neural phase space is analyzed in terms of symbolic dynamics. Well-defined mental states provide contexts inducing a criterion of structural stability for the neurodynamics that can be implemented by particular partitions. This leads to distinguished subshifts of finite type that are either cyclic or irreducible. Cyclic shifts correspond to asymptotically stable fixed points or limit tori whereas irreducible shifts are obtained from generating partitions of mixing hyperbolic systems. These stability criteria are applied to the discussion of neural correlates of consiousness, to the definition of macroscopic neural states, and to aspects of the symbol grounding problem. In particular, it is shown that compatible mental descriptions, topologically equivalent to the neurodynamical description, emerge if the partition of the neural phase space is generating. If this is not the case, mental descriptions are incompatible or complementary. Consequences of this result for an integration or unification of cognitive science or psychology, respectively, will be indicated.
Resumo:
In this paper, we propose to study a class of neural networks with recent-history distributed delays. A sufficient condition is derived for the global exponential periodicity of the proposed neural networks, which has the advantage that it assumes neither the differentiability nor monotonicity of the activation function of each neuron nor the symmetry of the feedback matrix or delayed feedback matrix. Our criterion is shown to be valid by applying it to an illustrative system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper will present a conceptual framework for the examination of land redevelopment based on a complex systems/networks approach. As Alvin Toffler insightfully noted, modern scientific enquiry has become exceptionally good at splitting problems into pieces but has forgotten how to put the pieces back together. Twenty-five years after his remarks, governments and corporations faced with the requirements of sustainability are struggling to promote an ‘integrated’ or ‘holistic’ approach to tackling problems. Despite the talk, both practice and research provide few platforms that allow for ‘joined up’ thinking and action. With socio-economic phenomena, such as land redevelopment, promising prospects open up when we assume that their constituents can make up complex systems whose emergent properties are more than the sum of the parts and whose behaviour is inherently difficult to predict. A review of previous research shows that it has mainly focused on idealised, ‘mechanical’ views of property development processes that fail to recognise in full the relationships between actors, the structures created and their emergent qualities. When reality failed to live up to the expectations of these theoretical constructs then somebody had to be blamed for it: planners, developers, politicians. However, from a ‘synthetic’ point of view the agents and networks involved in property development can be seen as constituents of structures that perform complex processes. These structures interact, forming new more complex structures and networks. Redevelopment then can be conceptualised as a process of transformation: a complex system, a ‘dissipative’ structure involving developers, planners, landowners, state agencies etc., unlocks the potential of previously used sites, transforms space towards a higher order of complexity and ‘consumes’ but also ‘creates’ different forms of capital in the process. Analysis of network relations point toward the ‘dualism’ of structure and agency in these processes of system transformation and change. Insights from actor network theory can be conjoined with notions of complexity and chaos to build an understanding of the ways in which actors actively seek to shape these structures and systems, whilst at the same time are recursively shaped by them in their strategies and actions. This approach transcends the blame game and allows for inter-disciplinary inputs to be placed within a broader explanatory framework that does away with many past dichotomies. Better understanding of the interactions between actors and the emergent qualities of the networks they form can improve our comprehension of the complex socio-spatial phenomena that redevelopment comprises. The insights that this framework provides when applied in UK institutional investment into redevelopment are considered to be significant.
Resumo:
Exponential spectra are found to characterize variability of the Northern Annular Mode (NAM) for periods less than 36 days. This corresponds to the observed rounding of the autocorrelation function at lags of a few days. The characteristic persistence timescales during winter and summer is found to be ∼5 days for these high frequencies. Beyond periods of 36 days the characteristic decorrelation timescale is ∼20 days during winter and ∼6 days in summer. We conclude that the NAM cannot be described by autoregressive models for high frequencies; the spectra are more consistent with low-order chaos. We also propose that the NAM exhibits regime behaviour, however the nature of this has yet to be identified.
Resumo:
In order to harness the computational capacity of dissociated cultured neuronal networks, it is necessary to understand neuronal dynamics and connectivity on a mesoscopic scale. To this end, this paper uncovers dynamic spatiotemporal patterns emerging from electrically stimulated neuronal cultures using hidden Markov models (HMMs) to characterize multi-channel spike trains as a progression of patterns of underlying states of neuronal activity. However, experimentation aimed at optimal choice of parameters for such models is essential and results are reported in detail. Results derived from ensemble neuronal data revealed highly repeatable patterns of state transitions in the order of milliseconds in response to probing stimuli.
Resumo:
This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.
Resumo:
Harmonic analysis on configuration spaces is used in order to extend explicit expressions for the images of creation, annihilation, and second quantization operators in L2-spaces with respect to Poisson point processes to a set of functions larger than the space obtained by directly using chaos expansion. This permits, in particular, to derive an explicit expression for the generator of the second quantization of a sub-Markovian contraction semigroup on a set of functions which forms a core of the generator.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.
Resumo:
Several methods are examined which allow to produce forecasts for time series in the form of probability assignments. The necessary concepts are presented, addressing questions such as how to assess the performance of a probabilistic forecast. A particular class of models, cluster weighted models (CWMs), is given particular attention. CWMs, originally proposed for deterministic forecasts, can be employed for probabilistic forecasting with little modification. Two examples are presented. The first involves estimating the state of (numerically simulated) dynamical systems from noise corrupted measurements, a problem also known as filtering. There is an optimal solution to this problem, called the optimal filter, to which the considered time series models are compared. (The optimal filter requires the dynamical equations to be known.) In the second example, we aim at forecasting the chaotic oscillations of an experimental bronze spring system. Both examples demonstrate that the considered time series models, and especially the CWMs, provide useful probabilistic information about the underlying dynamical relations. In particular, they provide more than just an approximation to the conditional mean.
Resumo:
BACKGROUND: We examined the role of aerosol transmission of influenza in an acute ward setting. METHODS: We investigated a seasonal influenza A outbreak that occurred in our general medical ward (with open bay ward layout) in 2008. Clinical and epidemiological information was collected in real time during the outbreak. Spatiotemporal analysis was performed to estimate the infection risk among patients. Airflow measurements were conducted, and concentrations of hypothetical virus-laden aerosols at different ward locations were estimated using computational fluid dynamics modeling. RESULTS: Nine inpatients were infected with an identical strain of influenza A/H3N2 virus. With reference to the index patient's location, the attack rate was 20.0% and 22.2% in the "same" and "adjacent" bays, respectively, but 0% in the "distant" bay (P = .04). Temporally, the risk of being infected was highest on the day when noninvasive ventilation was used in the index patient; multivariate logistic regression revealed an odds ratio of 14.9 (95% confidence interval, 1.7-131.3; P = .015). A simultaneous, directional indoor airflow blown from the "same" bay toward the "adjacent" bay was found; it was inadvertently created by an unopposed air jet from a separate air purifier placed next to the index patient's bed. Computational fluid dynamics modeling revealed that the dispersal pattern of aerosols originated from the index patient coincided with the bed locations of affected patients. CONCLUSIONS: Our findings suggest a possible role of aerosol transmission of influenza in an acute ward setting. Source and engineering controls, such as avoiding aerosol generation and improving ventilation design, may warrant consideration to prevent nosocomial outbreaks.
Resumo:
The discourse surrounding the virtual has moved away from the utopian thinking accompanying the rise of the Internet in the 1990s. The Cyber-gurus of the last decades promised a technotopia removed from materiality and the confines of the flesh and the built environment, a liberation from old institutions and power structures. But since then, the virtual has grown into a distinct yet related sphere of cultural and political production that both parallels and occasionally flows over into the old world of material objects. The strict dichotomy of matter and digital purity has been replaced more recently with a more complex model where both the world of stuff and the world of knowledge support, resist and at the same time contain each other. Online social networks amplify and extend existing ones; other cultural interfaces like youtube have not replaced the communal experience of watching moving images in a semi-public space (the cinema) or the semi-private space (the family living room). Rather the experience of viewing is very much about sharing and communicating, offering interpretations and comments. Many of the web’s strongest entities (Amazon, eBay, Gumtree etc.) sit exactly at this juncture of applying tools taken from the knowledge management industry to organize the chaos of the material world along (post-)Fordist rationality. Since the early 1990s there have been many artistic and curatorial attempts to use the Internet as a platform of producing and exhibiting art, but a lot of these were reluctant to let go of the fantasy of digital freedom. Storage Room collapses the binary opposition of real and virtual space by using online data storage as a conduit for IRL art production. The artworks here will not be available for viewing online in a 'screen' environment but only as part of a downloadable package with the intention that the exhibition could be displayed (in a physical space) by any interested party and realised as ambitiously or minimally as the downloader wishes, based on their means. The artists will therefore also supply a set of instructions for the physical installation of the work alongside the digital files. In response to this curatorial initiative, File Transfer Protocol invites seven UK based artists to produce digital art for a physical environment, addressing the intersection between the virtual and the material. The files range from sound, video, digital prints and net art, blueprints for an action to take place, something to be made, a conceptual text piece, etc. About the works and artists: Polly Fibre is the pseudonym of London-based artist Christine Ellison. Ellison creates live music using domestic devices such as sewing machines, irons and slide projectors. Her costumes and stage sets propose a physical manifestation of the virtual space that is created inside software like Photoshop. For this exhibition, Polly Fibre invites the audience to create a musical composition using a pair of amplified scissors and a turntable. http://www.pollyfibre.com John Russell, a founding member of 1990s art group Bank, is an artist, curator and writer who explores in his work the contemporary political conditions of the work of art. In his digital print, Russell collages together visual representations of abstract philosophical ideas and transforms them into a post apocalyptic landscape that is complex and banal at the same time. www.john-russell.org The work of Bristol based artist Jem Nobel opens up a dialogue between the contemporary and the legacy of 20th century conceptual art around questions of collectivism and participation, authorship and individualism. His print SPACE concretizes the representation of the most common piece of Unicode: the vacant space between words. In this way, the gap itself turns from invisible cipher to sign. www.jemnoble.com Annabel Frearson is rewriting Mary Shelley's Frankenstein using all and only the words from the original text. Frankenstein 2, or the Monster of Main Stream, is read in parts by different performers, embodying the psychotic character of the protagonist, a mongrel hybrid of used language. www.annabelfrearson.com Darren Banks uses fragments of effect laden Holywood films to create an impossible space. The fictitious parts don't add up to a convincing material reality, leaving the viewer with a failed amalgamation of simulations of sophisticated technologies. www.darrenbanks.co.uk FIELDCLUB is collaboration between artist Paul Chaney and researcher Kenna Hernly. Chaney and Hernly developed together a project that critically examines various proposals for the management of sustainable ecological systems. Their FIELDMACHINE invites the public to design an ideal agricultural field. By playing with different types of crops that are found in the south west of England, it is possible for the user, for example, to create a balanced, but protein poor, diet or to simply decide to 'get rid' of half the population. The meeting point of the Platonic field and it physical consequences, generates a geometric abstraction that investigates the relationship between modernist utopianism and contemporary actuality. www.fieldclub.co.uk Pil and Galia Kollectiv, who have also curated the exhibition are London-based artists and run the xero, kline & coma gallery. Here they present a dialogue between two computers. The conversation opens with a simple text book problem in business studies. But gradually the language, mimicking the application of game theory in the business sector, becomes more abstract. The two interlocutors become adversaries trapped forever in a competition without winners. www.kollectiv.co.uk
Resumo:
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
Resumo:
The validity of approximating radiative heating rates in the middle atmosphere by a local linear relaxation to a reference temperature state (i.e., ‘‘Newtonian cooling’’) is investigated. Using radiative heating rate and temperature output from a chemistry–climate model with realistic spatiotemporal variability and realistic chemical and radiative parameterizations, it is found that a linear regressionmodel can capture more than 80% of the variance in longwave heating rates throughout most of the stratosphere and mesosphere, provided that the damping rate is allowed to vary with height, latitude, and season. The linear model describes departures from the climatological mean, not from radiative equilibrium. Photochemical damping rates in the upper stratosphere are similarly diagnosed. Threeimportant exceptions, however, are found.The approximation of linearity breaks down near the edges of the polar vortices in both hemispheres. This nonlinearity can be well captured by including a quadratic term. The use of a scale-independentdamping rate is not well justified in the lower tropical stratosphere because of the presence of a broad spectrum of vertical scales. The local assumption fails entirely during the breakup of the Antarctic vortex, where large fluctuations in temperature near the top of the vortex influence longwave heating rates within the quiescent region below. These results are relevant for mechanistic modeling studies of the middle atmosphere, particularly those investigating the final Antarctic warming.
Resumo:
Satellite-based Synthetic Aperture Radar (SAR) has proved useful for obtaining information on flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides water level observations that can be assimilated into a hydrodynamic model to decrease forecast uncertainty. With an increasing number of operational satellites with SAR capability, information on the relationship between satellite first visit and revisit times and forecast performance is required to optimise the operational scheduling of satellite imagery. By using an Ensemble Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007,Tewkesbury, Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. We emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotemporal correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement with previous research, estimation and correction for this bias leads to a clear improvement in keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a large influence on forecast statistics. Revisit interval is most influential for early observations. The results are promising for the future of remote sensing-based water level observations for real-time flood forecasting in complex scenarios.
Resumo:
Monteiro’s assertion of the almighty auteur, after the post-structuralist and post-modern experiences, which had shattered the author and his work in theory and practice, reinstates an authority aimed at organising the chaos caused by the lack of narrative. In a way, therefore, Monteiro’s output is conservative, displaying a peculiar atemporal style, which seems entirely immune to fashion. On the other hand, however, few contemporary films could be more radical than his. Authorship, in his case, means the absence of limits and total freedom of expressing his obsessive world.