66 resultados para Spatial Mixture Models
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.
Resumo:
This paper investigates how the correlations implied by a first-order simultaneous autoregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation parameter. A graph theoretic representation of the covariances in terms of walks connecting the spatial units helps to clarify a number of correlation properties of the processes. In particular, we study some implications of row-standardizing the weights matrix, the dependence of the correlations on graph distance, and the behavior of the correlations at the extremes of the parameter space. Throughout the analysis differences between directed and undirected networks are emphasized. The graph theoretic representation also clarifies why it is difficult to relate properties ofW to correlation properties of SAR(1) models defined on irregular lattices.
Resumo:
The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.
Resumo:
The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.
Resumo:
though discrete cell-based frameworks are now commonly used to simulate a whole range of biological phenomena, it is typically not obvious how the numerous different types of model are related to one another, nor which one is most appropriate in a given context. Here we demonstrate how individual cell movement on the discrete scale modeled using nonlinear force laws can be described by nonlinear diffusion coefficients on the continuum scale. A general relationship between nonlinear force laws and their respective diffusion coefficients is derived in one spatial dimension and, subsequently, a range of particular examples is considered. For each case excellent agreement is observed between numerical solutions of the discrete and corresponding continuum models. Three case studies are considered in which we demonstrate how the derived nonlinear diffusion coefficients can be used to (a) relate different discrete models of cell behavior; (b) derive discrete, intercell force laws from previously posed diffusion coefficients, and (c) describe aggregative behavior in discrete simulations.
Resumo:
Patterns of forest cover and forest degradation determine the size and types of ecosystem services forests provide. Particularly in low-income countries, nontimber forest product (NTFP) extraction by rural people, which provides important resources and income to the rural poor, contributes to the level and pattern of forest degradation. Although recent policy, particularly in Africa, emphasizes forest degradation, relatively little research describes the spatial aspects of NTFP collection that lead to spatial degradation patterns. This paper reviews both the spatial empirical work on NTFP extraction and related forest degradation patterns, and spatial models of behavior of rural people who extract NTFPs from forest. Despite the impact of rural people's behavior on resulting quantities and patterns of forest resources, spatial–temporal models/patterns rarely inform park siting and sizing decisions, econometric assessments of park effectiveness, development projects to support conservation, or REDD protocols. Using the literature review as a lens, we discuss the models' implications for these policies with particular emphasis on effective conservation spending and leakage.
Resumo:
The prebiotic Bimuno (R) is a mixture containing galactooligosaccharides (GOSs), produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 411 71 using lactose as the substrate Previous in vivo and in vitro studies demonstrating the efficacy of Bimuno (R) in reducing Salmonella enterica serovar Typhimurium (S Typhimurium) colonization did not ascertain whether or not the protective effects could be attributed to the prebiotic component GOS Here we wished to test the hypothesis that GOS, derived from Bimuno (R) may confer the direct anti-invasive and protective effects of Bimuno (R) In this study the efficacy of Bimuno (R), a basal solution of Bimuno (R) without GOS [which contained glucose, galactose, lactose, maltodextrin and gum arabic in the same relative proportions (w/w) as they are found in Bimuno (R)] and purified GOS to reduce S Typhimurium adhesion and invasion was assessed using a series of in vitro and in vivo models The novel use of three dimensionally cultured HT-29-16E cells to study prebiotics in vitro demonstrated that the presence of similar to 5 mg Bimuno (R) ml(-1) or similar to 2 5 mg GOS ml(-1) significantly reduced the invasion of S Typhimurium (SL1344nal(r)) (P<0 0001) Furthermore, similar to 2 5 mg GOS ml(-1) significantly reduced the adherence of S Typhimurium (SU 344nal(r)) (P<0 0001) It was demonstrated that cells produced using this system formed multi-layered aggregates of cells that displayed excellent formation of brush borders and tight junctions In the murine ligated deal gut loops, the presence of Bimuno (R) or GOS prevented the adherence or invasion of S Typhimurium to enterocytes, and thus reduced its associated pathology This protection appeared to correlate with significant reductions in the neutral and acidic mucins detected in goblet cells, possibly as a consequence of stimulating the cells to secrete the mucin into the lumen In all assays, Bimuno (R) without GOS conferred no such protection, indicating that the basal solution confers no protective effects against S Typhimurium Collectively, the studies presented here clearly indicate that the protective effects conferred by Bimuno (R) can be attributed to GOS
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
Models of root system growth emerged in the early 1970s, and were based on mathematical representations of root length distribution in soil. The last decade has seen the development of more complex architectural models and the use of computer-intensive approaches to study developmental and environmental processes in greater detail. There is a pressing need for predictive technologies that can integrate root system knowledge, scaling from molecular to ensembles of plants. This paper makes the case for more widespread use of simpler models of root systems based on continuous descriptions of their structure. A new theoretical framework is presented that describes the dynamics of root density distributions as a function of individual root developmental parameters such as rates of lateral root initiation, elongation, mortality, and gravitropsm. The simulations resulting from such equations can be performed most efficiently in discretized domains that deform as a result of growth, and that can be used to model the growth of many interacting root systems. The modelling principles described help to bridge the gap between continuum and architectural approaches, and enhance our understanding of the spatial development of root systems. Our simulations suggest that root systems develop in travelling wave patterns of meristems, revealing order in otherwise spatially complex and heterogeneous systems. Such knowledge should assist physiologists and geneticists to appreciate how meristem dynamics contribute to the pattern of growth and functioning of root systems in the field.
Resumo:
An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.
Resumo:
Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges.
Resumo:
A theoretical framework for the joint conservation of energy and momentum in the parameterization of subgrid-scale processes in climate models is presented. The framework couples a hydrostatic resolved (planetary scale) flow to a nonhydrostatic subgrid-scale (mesoscale) flow. The temporal and horizontal spatial scale separation between the planetary scale and mesoscale is imposed using multiple-scale asymptotics. Energy and momentum are exchanged through subgrid-scale flux convergences of heat, pressure, and momentum. The generation and dissipation of subgrid-scale energy and momentum is understood using wave-activity conservation laws that are derived by exploiting the (mesoscale) temporal and horizontal spatial homogeneities in the planetary-scale flow. The relations between these conservation laws and the planetary-scale dynamics represent generalized nonacceleration theorems. A derived relationship between the wave-activity fluxes-which represents a generalization of the second Eliassen-Palm theorem-is key to ensuring consistency between energy and momentum conservation. The framework includes a consistent formulation of heating and entropy production due to kinetic energy dissipation.
Resumo:
We evaluated the accuracy of six watershed models of nitrogen export in streams (kg km2 yr−1) developed for use in large watersheds and representing various empirical and quasi-empirical approaches described in the literature. These models differ in their methods of calibration and have varying levels of spatial resolution and process complexity, which potentially affect the accuracy (bias and precision) of the model predictions of nitrogen export and source contributions to export. Using stream monitoring data and detailed estimates of the natural and cultural sources of nitrogen for 16 watersheds in the northeastern United States (drainage sizes = 475 to 70,000 km2), we assessed the accuracy of the model predictions of total nitrogen and nitrate-nitrogen export. The model validation included the use of an error modeling technique to identify biases caused by model deficiencies in quantifying nitrogen sources and biogeochemical processes affecting the transport of nitrogen in watersheds. Most models predicted stream nitrogen export to within 50% of the measured export in a majority of the watersheds. Prediction errors were negatively correlated with cultivated land area, indicating that the watershed models tended to over predict export in less agricultural and more forested watersheds and under predict in more agricultural basins. The magnitude of these biases differed appreciably among the models. Those models having more detailed descriptions of nitrogen sources, land and water attenuation of nitrogen, and water flow paths were found to have considerably lower bias and higher precision in their predictions of nitrogen export.
Resumo:
Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.
Resumo:
Human-made transformations to the environment, and in particular the land surface, are having a large impact on the distribution (in both time and space) of rainfall, upon which all life is reliant. Focusing on precipitation, soil moisture and near-surface temperature, we compare data from Phase 5 of the Climate Modelling Intercomparison Project (CMIP5), as well as blended observational–satellite data, to see how the interaction between rainfall and the land surface differs (or agrees) between the models and reality, at daily timescales. As expected, the results suggest a strong positive relationship between precipitation and soil moisture when precipitation leads and is concurrent with soil moisture estimates, for the tropics as a whole. Conversely a negative relationship is shown when soil moisture leads rainfall by a day or more. A weak positive relationship between precipitation and temperature is shown when either leads by one day, whereas a weak negative relationship is shown over the same time period between soil moisture and temperature. Temporally, in terms of lag and lead relationships, the models appear to be in agreement on the overall patterns of correlation between rainfall and soil moisture. However, in terms of spatial patterns, a comparison of these relationships across all available models reveals considerable variability in the ability of the models to reproduce the correlations between precipitation and soil moisture. There is also a difference in the timings of the correlations, with some models showing the highest positive correlations when precipitation leads soil moisture by one day. Finally, the results suggest that there are 'hotspots' of high linear gradients between precipitation and soil moisture, corresponding to regions experiencing heavy rainfall. These results point to an inability of the CMIP5 models to simulate a positive feedback between soil moisture and precipitation at daily timescales. Longer timescale comparisons and experiments at higher spatial resolutions, where the impact of the spatial heterogeneity of rainfall on the initiation of convection and supply of moisture is included, would be expected to improve process understanding further.