37 resultados para Solid-phase peptide synthesis
Resumo:
A total of sixteen lambs were divided into two groups and fed two different diets. Of these, eight lambs were fed a control diet (C) and eight lambs were fed the C diet supplemented with quebracho tannins (C+T). The objective of the present study was to assess whether dietary quebracho tannins can improve the antioxidant capacity of lamb liver and plasma and if such improvement is due to a direct transfer of phenolic compounds or their metabolites, to the animal tissues. Feed, liver and plasma samples were purified by solid-phase extraction (SPE) and analysed by liquid chromatography–MS for phenolic compounds. Profisitinidin compounds were identified in the C+T diet. However, no phenolic compounds were found in lamb tissues. The liver and the plasma from lambs fed the C+T diet displayed a greater antioxidant capacity than tissues from lambs fed the C diet, but only when samples were not purified with SPE. Profisetinidin tannins from quebracho seem not to be degraded or absorbed in the gastrointestinal tract. However, they induced antioxidant effects in animal tissues.
Resumo:
Novel acidic varieties of muskmelon (Cucumis melo L.) are emerging onto the UK market. These melons contain almost twice the amount of citric acid compared to standard melons and are described as ‘zesty and fresh’. This study compared the flavour components of three acidic varieties with a standard Galia-type melon. The volatile and semivolatile compounds were extracted using dynamic headspace extraction (DHE) or solid-phase microextraction (SPME) and solid phase extraction (SPE) respectively, followed by gas chromatography – mass spectrometry (GC-MS) and gas chromatography – olfactometry (GC-O). More than 50 volatile and 50 semivolatile compounds were identified in the headspace and the SPE extracts respectively. GC-O revealed 15 odour-active components in the headspace, with esters being consistently higher in acidic variety. This study showed quantitative and qualitative differences between all four varieties and key differences between acidic varieties and standard melons.
Resumo:
Three new phenylmercury(II) and one mercury(II) dithiocarbamate complexes viz. PhHg S2CN(PyCH2) Bz (1), PhHg S2CN(PyCH2)CH3 (2), PhHg S2CN(Bz)CH3 (3), and [Hg (NCS2(PyCH2)Bz)(2)] (4) (Py = pyridine; Bz = benzyl) have been synthesized and characterized by elemental analyses, IR, electronic absorption, H-1 and C-13 NMR spectroscopy. The crystal structures of 1, 2 and 3 showed a linear S-Hg-C core at the centre of the molecule, in which the metal atom is bound to the sulfur atom of the dithiocarbamate ligand and a carbon atom of the aromatic ring. In contrast the crystal structure of 4 showed a linear S-Hg-S core at the Hg(II) centre of the molecule. Weak intermolecular Hg center dot center dot center dot N (Py) interactions link molecules into a linear chain in the case of 1, whereas chains of dimers are formed in 2 through intermolecular Hg center dot center dot center dot N (Py) and Hg center dot center dot center dot S interactions. 3 forms a conventional face-to-edge dimeric structure through intermolecular Hg center dot center dot center dot S secondary bonding and 4 forms a linear chain of dimers through face-to-face Hg center dot center dot center dot S secondary bonding. In order to elucidate the nature of these secondary bonding interactions and the electronic absorption spectra of the complexes, ab initio quantum chemical calculations at the MP2 level and density functional theory calculations were carried out for 1-3. Complexes 1 and 2 exhibited photoluminescent properties in the solid state as well as in the solution phase. Studies indicate that Hg center dot center dot center dot S interactions decrease and Hg center dot center dot center dot N interactions increase the chances of photoluminescence in the solid phase
Resumo:
The flavour profiles of two genotypes of Charentais cantaloupe melons (medium shelf-life and long shelf-life), harvested at two distinct maturities (immature and mature fruit), were investigated. Dynamic headspace extraction (DHE), solid-phase extraction (SPE), gas chromatography–mass spectrometry (GC-MS) and gas chromatography–olfactometry/mass spectrometry (GC-O/MS) were used to determine volatile and semi-volatile compounds. Qualitative descriptive analysis (QDA) was used to assess the organoleptic impact of the different melons and the sensory data were correlated with the chemical analysis. There were significant, consistent and substantial differences between the mature and immature fruit for the medium shelf-life genotype, the less mature giving a green, cucumber character and lacking the sweet, fruity character of the mature fruit. However, maturity at harvest had a much smaller impact on the long shelf-life melons and fewer differences were detected. These long shelf-life melons tasted sweet, but lacked fruity flavours, instead exhibiting a musty, earthy character.
Resumo:
Sixteen lambs were divided into two groups and fed two different diets. Eight lambs were stall-fed with a concentrate-based diet (C), and the remaining eight lambs were allowed to graze on Lolium perenne (G). The antioxidant status was measured in the liver and plasma samples before and after solid-phase extraction (SPE) to probe the antioxidant effects that grass phenolic compounds may have conferred onto the animal tissues. The liver and plasma samples from grass-fed lambs displayed a greater antioxidant capacity than the tissues from C lamb group, but only if samples had not been passed through SPE cartridges. Finally, the feed and animal tissues, which had been purified by SPE, were analysed by liquid chromatography combined with mass spectrometry (LC-MS) to identify phenolic compounds present in L. perenne and to evaluate the results from the antioxidant assays. It would appear that the improvement of the antioxidant capacity of lamb liver and plasma from lambs fed ryegrass was not related to the direct transfer of phenolic compounds from grass to the animal tissues.
Resumo:
The relations between the rheological and electrical properties of NaY zeolite electrorheological fluid and its solid phase are studied. It is found that then exist complex relations between its electrical and theological properties. The temperature spectra of dielectric properties of the fluid under high AC electric field are strongly field strength dependent. The relation between the DC conductivity of the fluid and the exciting electric field is experimentally presented as log sigma =A+BE1/2, when A is a strong function, but B, a very weak function of temperature. The shear stress of the fluid under a fixed electric field and temperature decreases with shear rate. A relaxation time for the adsorbed charges is estimated to be about 0.3 to 6.6 s in the temperature range from 280 to 380 K. The relaxation time qualitatively corresponds to the shear rate at which the shear stress begins to drop. The time dependent leaking current of the ER fluids under DC electric field is also measured. The conductivity increase is mainly caused by the structure evolution of particles. The experimental results can he explained with the calculations of Davis (J. Appl. Phys. 81(1997) pp.1985-1991) and Martin (J. Chem. Phys. 110(1999) pp.4854-4866). It is predicted that the NaY zeolite ER fluid strength would get degraded slowly.
Resumo:
Background and Aims Despite recent recognition that (1) plant–herbivore interactions during the establishment phase, (2) ontogenetic shifts in resource allocation and (3) herbivore response to plant volatile release are each pivotal to a comprehensive understanding of plant defence, no study has examined how herbivore olfactory response varies during seedling ontogeny. Methods Using a Y-tube olfactometer we examined snail (Helix aspersa) olfactory response to pellets derived from macerated Plantago lanceolata plants harvested at 1, 2, 3, 4, 5, 6 and 8 weeks of age to test the hypothesis that olfactory selection of plants by a generalist herbivore varies with plant age. Plant volatiles were collected for 10 min using solid-phase microextraction technique on 1- and 8-week-old P. lanceolata pellets and analysed by gas chromatography coupled with a mass spectrometer. Key Results Selection of P. lanceolata was strongly negatively correlated with increasing age; pellets derived from 1-week-old seedlings were three times more likely to be selected as those from 8-week-old plants. Comparison of plant selection experiments with plant volatile profiles from GC/MS suggests that patterns of olfactory selection may be linked to ontogenetic shifts in concentrations of green leaf volatiles and ethanol (and its hydrolysis derivatives). Conclusions Although confirmatory of predictions made by contemporary plant defence theory, this is the first study to elucidate a link between seedling age and olfactory selection by herbivores. As a consequence, this study provides a new perspective on the ontogenetic expression of seedling defence, and the role of seedling herbivores, particularly terrestrial molluscs, as selective agents in temperate plant communities.