66 resultados para Simultaneous optimization
Resumo:
The combination of the synthetic minority oversampling technique (SMOTE) and the radial basis function (RBF) classifier is proposed to deal with classification for imbalanced two-class data. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier structure and the parameters of RBF kernels are determined using a particle swarm optimization algorithm based on the criterion of minimizing the leave-one-out misclassification rate. The experimental results on both simulated and real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.
Resumo:
While the Cluster spacecraft were located near the high-latitude magnetopause, between 1010 and 1040 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all‐sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7 nm that show poleward‐moving auroral forms (PMAFs), consistent with magnetic reconnection at the dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all‐sky images. Between the PMAFs meridional keograms, extracted from the all‐sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open‐closed boundary associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs, we infer that the evolution time of FTEs is 5–11 minutes from its origin on the magnetopause to its addition to the polar cap.
Resumo:
There have been various techniques published for optimizing the net present value of tenders by use of discounted cash flow theory and linear programming. These approaches to tendering appear to have been largely ignored by the industry. This paper utilises six case studies of tendering practice in order to establish the reasons for this apparent disregard. Tendering is demonstrated to be a market orientated function with many subjective judgements being made regarding a firm's environment. Detailed consideration of 'internal' factors such as cash flow are therefore judged to be unjustified. Systems theory is then drawn upon and applied to the separate processes of estimating and tendering. Estimating is seen as taking place in a relatively sheltered environment and as such operates as a relatively closed system. Tendering, however, takes place in a changing and dynamic environment and as such must operate as a relatively open system. The use of sophisticated methods to optimize the value of tenders is then identified as being dependent upon the assumption of rationality, which is justified in the case of a relatively closed system (i.e. estimating), but not for a relatively open system (i.e. tendering).
Resumo:
A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV–vis–NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)](HC≡CArC≡CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate π-symmetry.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
Experimental results of the temperature dependence of the nonlinear optical response of methyl red doped polymethylmethacrylate films in the range 20°C to 170°C are reported. It is found that the intensity of the phase conjugate signal resulting from degenerate four-wave mixing using pump and probe beams with parallel polarisation states increases dramatically on heating by a factor of ∼ 10, reaching a maximum at ∼ 100°C. The intensity of the phase conjugate signal for the case with crossed polarisation states of the pump and probe beams drops monotonically with increasing temperature. For both configurations the response time shortens with increasing temperature. The particular role of the polymer matrix in this temperature variation of the nonlinear optical response is discussed.
Resumo:
In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
We studied the effect of tactile double simultaneous stimulation (DSS) within and between hands to examine spatial coding of touch at the fingers. Participants performed a go/no-go task to detect a tactile stimulus delivered to one target finger (e.g., right index), stimulated alone or with a concurrent non-target finger, either on the same hand (e.g., right middle finger) or on the other hand (e.g., left index finger=homologous; left middle finger=non-homologous). Across blocks we also changed the unseen hands posture (both hands palm down, or one hand rotated palm-up). When both hands were palm-down DSS interference effects emerged both within and between hands, but only when the non-homologous finger served as non-target. This suggests a clear segregation between the fingers of each hand, regardless of finger side. By contrast, when one hand was palm-up interference effects emerged only within hand, whereas between hands DSS interference was considerably reduced or absent. Thus, between hands interference was clearly affected by changes in hands posture. Taken together, these findings provide behavioral evidence in humans for multiple spatial coding of touch during tactile DSS at the fingers. In particular, they confirm the existence of representational stages of touch that distinguish between body-regions more than body-sides. Moreover, they show that the availability of tactile stimulation side becomes prominent when postural update is required.
Resumo:
In the absence of a suitable method for routine analysis of large numbers of natural river water samples for organic nitrogen and phosphorus fractions, a new simultaneous digestion technique was developed, based on a standard persulphate digestion procedure. This allows rapid analysis of river, lake and groundwater samples from a range of environments for total nitrogen and phosphorus. The method was evaluated using a range of organic nitrogen and phosphorus structures tested at low, mid and high range concentrations from 2 to 50 mg l-1 nitrogen and 0.2 to 10 mg l-1 phosphorus. Mean recoveries for nitrogen ranged from 94.5% (2 mg I-1) to 92.7% (50 mg I-1) and for phosphorus were 98.2% (0.2 mg l-1) to 100.2% (10 mg l-1). The method is precise in its ability m reproduce results from replicate digestions, and robust in its ability to handle a variety of natural water samples in the pH range 5-8.
Resumo:
Duchenne muscular dystrophy is a fatal muscle-wasting disorder. Lack of dystrophin compromises the integrity of the sarcolemma and results in myofibers that are highly prone to contraction-induced injury. Recombinant adenoassociated virus (rAAV)-mediated dystrophin gene transfer strategies to muscle for the treatment of Duchenne muscular dystrophy (DMD) have been limited by the small cloning capacity of rAAV vectors and high titers necessary to achieve efficient systemic gene transfer. In this study, we assess the impact of codon optimization on microdystrophin (ΔAB/R3-R18/ΔCT) expression and function in the mdx mouse and compare the function of two different configurations of codon-optimized microdystrophin genes (ΔAB/R3-R18/ΔCT and ΔR4-R23/ΔCT) under the control of a muscle-restrictive promoter (Spc5-12). Codon optimization of microdystrophin significantly increases levels of microdystrophin mRNA and protein after intramuscular and systemic administration of plasmid DNA or rAAV2/8. Physiological assessment demonstrates that codon optimization of ΔAB/R3-R18/ΔCT results in significant improvement in specific force, but does not improve resistance to eccentric contractions compared with noncodon-optimized ΔAB/ R3-R18/ΔCT. However, codon-optimized microdystrophin ΔR4-R23/ΔCT completely restored specific force generation and provided substantial protection from contraction-induced injury. These results demonstrate that codon optimization of microdystrophin under the control of a muscle-specific promoter can significantly improve expression levels such that reduced titers of rAAV vectors will be required for efficient systemic administration.
Resumo:
In mid-March 2005, a rare lower stratospheric polar vortex filamentation event was observed simultaneously by the JPL lidar at Mauna Loa Observatory, Hawaii, and by the EOS MLS instrument onboard the Aura satellite. The event coincided with the beginning of the spring 2005 final warming. On 16 March, the filament was observed by lidar around 0600 UT between 415 K and 455 K, and by MLS six hours earlier. It was seen on both the lidar and MLS profiles as a layer of enhanced ozone, peaking at 1.7 ppmv in a region where the climatological values are usually around or below 1 ppmv. Ozone profiles measured by lidar and MLS were compared to profiles from the Chemical Transport Model MIMOSA-CHIM. The agreement between lidar, MLS, and the model is excellent considering the difference in the sampling techniques. MLS was also able to identify the filament at another location north of Hawaii.
Resumo:
For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.
Resumo:
We propose a new sparse model construction method aimed at maximizing a model’s generalisation capability for a large class of linear-in-the-parameters models. The coordinate descent optimization algorithm is employed with a modified l1- penalized least squares cost function in order to estimate a single parameter and its regularization parameter simultaneously based on the leave one out mean square error (LOOMSE). Our original contribution is to derive a closed form of optimal LOOMSE regularization parameter for a single term model, for which we show that the LOOMSE can be analytically computed without actually splitting the data set leading to a very simple parameter estimation method. We then integrate the new results within the coordinate descent optimization algorithm to update model parameters one at the time for linear-in-the-parameters models. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.