58 resultados para Silver Nanoparticles
Resumo:
Nutrigenetics and personalised nutrition are components of the concept that in the future genotyping will be used as a means of defining dietary recommendations to suit the individual. Over the last two decades there has been an explosion of research in this area, with often conflicting findings reported in the literature. Reviews of the literature in the area of apoE genotype and cardiovascular health, apoA5 genotype and postprandial lipaemia and perilipin and adiposity are used to demonstrate the complexities of genotype-phenotype associations and the aetiology of apparent between-study inconsistencies in the significance and size of effects. Furthermore, genetic research currently often takes a very reductionist approach, examining the interactions between individual genotypes and individual disease biomarkers and how they are modified by isolated dietary components or foods. Each individual possesses potentially hundreds of 'at-risk' gene variants and consumes a highly-complex diet. In order for nutrigenetics to become a useful public health tool, there is a great need to use mathematical and bioinformatic tools to develop strategies to examine the combined impact of multiple gene variants on a range of health outcomes and establish how these associations can be modified using combined dietary strategies.
Resumo:
Poly(acrylic acid) forms insoluble hydrogen-bonded interpolymer complexes with methylcellulose in aqueous solutions under acidic conditions. In this work the reaction heats and binding constants were determined for the complexation between poly(acrylic acid) and methylcellulose by isothermal titration calorimetry at different pH and findings are correlated with the aggregation processes occurring in this system. The principal contribution to the complexation heat results from primary polycomplex particle aggregation. Transmission electron microscopy of nanoparticles produced at pH 1.4 and 2.4 demonstrated that they are spherical and dense structures. The nanoparticles ranged from 80 to 200 nm, whereas particles formed at pH 3.2 were 20-30 nm and were stabilized against aggregation by a network of uncomplexed macromolecules. For the first time, multilayered materials were developed on the basis of hydrogen-bonded complexes of poly(acrylic acid) and methylcellulose using layer-by-layer deposition on a glass surface. The thickness of these films was a linear function of the number of deposition cycles. The materials were subsequently cross-linked by thermal treatment, resulting in ultrathin hydrogels which detached from the glass substrate upon swelling. The swelling capacity of ultrathin hydrogels differed from the swelling of the thicker films of a similar chemical composition.
Resumo:
The periodic domains formed by block copolymer melts have been heralded as potential scaffolds for arranging nanoparticles in 3d space, provided we can control the positioning of the particles. Recent experiments have located particles at the domain interfaces by grafting mixed brushes to their surfaces. Here the underlying mechanism, which involves the transformation into Janus particles, is investigated with self-consistent field theory using a new multi-coordinate-system algorithm.
Resumo:
Recent experiments have demonstrated that nanoparticles which sparsely distributed over a solid substrate can substantially change the flow conditions at the solid surface in the presence of slip. Inspired by these observations, the flow past tiny particles seeded on a solid substrate is investigated theoretically in the framework of an interface formation model. It has been shown, that even a single seeded nanoparticle can reduce significantly the measurable tangential component of hydrodynamic velocity at the substrate and affect the amount of the observed apparent slippage of the liquid. The effect from the particle manifests in a form of a long relaxation tail defined by the characteristic time of the interface formation process. A comparison with experiments has demonstrated a good agreement between theoretically predicted and experimentally observed values of the relaxation tail length scale.
Resumo:
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates.
Resumo:
A novel approach has been developed to synthesize thiolated sub-100 nm organosilica nanoparticles from 3-mercaptopropyltrimethoxysilane (MPTS) through its self-condensation in dimethylsulfoxide in contact with atmospheric oxygen. The formation of MPTS nanoparticles proceeds through the condensation of methoxysilane groups and simultaneous disulfide bridging caused by partial oxidation of thiol groups. These nanoparticles showed excellent colloidal stability in dilute aqueous dispersions but underwent further self-assembly into chains and necklaces at higher concentrations. They exhibited very good ability to adhere to ocular mucosal surfaces, which can find applications in drug delivery. The thiolated nanoparticles could also be easily modified through PEGylation resulting in a loss of their mucoadhesive properties.
Resumo:
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.
Resumo:
A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed ‘‘emulsomes’’ are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.
Resumo:
PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.
Resumo:
Binary mixed-metal variants of the one-dimensional MCN compounds (M = Cu, Ag, and Au) have been prepared and characterized using powder X-ray diffraction, vibrational spectroscopy, and total neutron diffraction. A solid solution with the AgCN structure exists in the (CuxAg1–x)CN system over the range (0 ≤ x ≤ 1). Line phases with compositions (Cu1/2Au1/2)CN, (Cu7/12Au5/12)CN, (Cu2/3Au1/3)CN, and (Ag1/2Au1/2)CN, all of which have the AuCN structure, are found in the gold-containing systems. Infrared and Raman spectroscopies show that complete ordering of the type [M–C≡N–M′–N≡C−]n occurs only in (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN. The sense of the cyanide bonding was determined by total neutron diffraction to be [Ag–NC–Au–CN−]n in (Ag1/2Au1/2)CN and [Cu–NC–Au–CN−]n in (Cu1/2Au1/2)CN. In contrast, in (Cu0.50Ag0.50)CN, metal ordering is incomplete, and strict alternation of metals does not occur. However, there is a distinct preference (85%) for the N end of the cyanide ligand to be bonded to copper and for Ag–CN–Cu links to predominate. Contrary to expectation, aurophilic bonding does not appear to be the controlling factor which leads to (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN adopting the AuCN structure. The diffuse reflectance, photoluminescence, and 1-D negative thermal expansion (NTE) behaviors of all three systems are reported and compared with those of the parent cyanide compounds. The photophysical properties are strongly influenced both by the composition of the individual chains and by how such chains pack together. The NTE behavior is also controlled by structure type: the gold-containing mixed-metal cyanides with the AuCN structure show the smallest contraction along the chain length on heating.
Resumo:
The present work reports a convenient route for the immobilisation of a phenanthroline-bis triazine (C1-BTPhen) group on the surface of zirconia-coated maghemite (γ-Fe2O3) magnetic nanoparticles. The magnetic nanoparticles functionalized with C1-BTPhen were able to co-extract Am(III) and Eu(III) from nitric acid (HNO3). The extraction efficiency of these C1-BTPhen-functionalized magnetic nanoparticles for both Am(III) and Eu(III) was 20% at 4M HNO3. The interaction between C1-BTPhen and metal cations is reversible. These functionalized magnetic nanoparticles can be used for the co-extraction of traces of Am(III) and Eu(III).
Resumo:
Thiol- and acrylate-functionalized nanoparticles have been synthesized from pentaerythritol tetrakis(3-mercapto-propionate) and pentaerythritol tetraacrylate using thiol-ene click chemistry. Using Raman and 1H NMR spectroscopy as well as Ellman's assay, it was demonstrated that excess pentaerythritol tetraacrylate in the feed mixture led to nanoparticles with free acrylate groups on their surface, whereas nanoparticles with thiolated surfaces could be synthesized using feed mixtures with excess pentaerythritol tetrakis(3-mercapto-propionate). The possibility of fluorescent labelling of thiolated nanoparticles has been demonstrated through their reaction with fluorescein-5-maleimide. The thiolated nanoparticles were found to be mucoadhesive and exhibited retention on mucosal surface of porcine urinary bladder.
Resumo:
A new, healable, supramolecular nanocomposite material has been developed and evaluated. The material comprises a blend of three components: a pyrene-functionalized polyamide, a polydiimide and pyrenefunctionalized gold nanoparticles (P-AuNPs). The polymeric components interact by forming well-defined p–p stacked complexes between p-electron rich pyrenyl residues and p-electron deficient polydiimide residues. Solution studies in the mixed solvent chloroform–hexafluoroisopropanol (6 : 1, v/v) show that mixing the three components (each of which is soluble in isolation), results in the precipitation of a supramolecular, polymer nanocomposite network. The precipitate thus formed can be re-dissolved on heating, with the thermoreversible dissolution/precipitation procedure repeatable over at least 5 cycles. Robust, self-supporting composite films containing up to 15 wt% P-AuNPs could be cast from 2,2,2- trichloroethanol. Addition of as little as 1.25 wt% P-AuNPs resulted in significantly enhanced mechanical properties compared to the supramolecular blend without nanoparticles. The nanocomposites showed a linear increase in both tensile moduli and ultimate tensile strength with increasing P-AuNP content. All compositions up to 10 wt% P-AuNPs exhibited essentially quantitative healing efficiencies. Control experiments on an analogous nanocomposite material containing dodecylamine-functionalized AuNPs (5 wt%) exhibited a tensile modulus approximately half that of the corresponding nanocomposite that incorporated 5 wt% pyrene functionalized-AuNPs, clearly demonstrating the importance of the designed interactions between the gold filler and the supramolecular polymer matrix.