167 resultados para Signal spectrum
Resumo:
The infrared spectrum of carbon suboxide has been recorded with a resolution of 0•01cm-1 from 400 to 700 cm-1. The region from 530 to 570 cm-1 shows intense absorption due to the v6(Πu) band system, of which the fundamental band only has been assigned and analysed, giving v6=540•221 cm-1. The region 590 to 660 cm-1 shows weaker absorption due to the v5(Πg) band system appearing in combination with odd quanta of the v7(Πu) fundamental at 18 cm-1. The v5 + v7 band and several hot bands have been assigned and analysed, and the effective v7 bending potential in the v5 state has been deduced. This potential shows a splitting as the large amplitude bending coordinate q7 is displaced due to interaction between v5 and v7 analogous to the Renner-Teller effect in electronic spectroscopy. This splitting is about 4 cm-1 for the classical turning points in q7 and the mean q7 bending potential is closely similar to that in the ground state.
Resumo:
Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.
Resumo:
The microwave spectrum of 1-pyrazoline has been observed from 18 to 40 GHz in the six lowest states of the ring-puckering vibration. It is an a-type spectrum of a near oblate asymmetric top. Each vibrational state has been fitted to a separate effective Hamiltonian, and the vibrational dependence of both the rotational constants and the quartic centrifugal distortion constants has been observed and analyzed. The v = 0 and 1 states have also been analyzed using a coupled Hamiltonian; this gives consistent results, with an improved fit to the high J data. The preferred choice of Durig et al. [J. Chem. Phys. 52, 6096 (1970)] for the ring-puckering potential is confirmed as essentially correct, but the A and B inertial axes are shown to be interchanged from those assumed by Durig et al. in their analysis of the mid-infrared spectrum.
Resumo:
The microwave spectrum of SiD3NCO has been observed and analyzed for 18 different vibrational states in the ν10 manifold. Some accidental resonances have been observed and analyzed. The vibrational dependence of the rotational and l-doubling constant and centrifugal distortion constant DJK has been successfully interpreted in terms of the two-dimensional anharmonic oscillator model.
Resumo:
The a/b hybrid-type ν1 fundamental and 2ν2 overtone bands of HOF were investigated by FTIR spectroscopy with a resolution close to 0.008 cm−1. Improved ground state parameters of HOF were determined from a merge of more than 3000 ground state combination differences formed from ν1 and previously measured ν2 transitions with the reported pure rotational lines. Excited state parameters of the v2 = 2 state, ν0 = 2686.924 6(1) and χ22 = −9.942 4(1) cm−1, were determined employing Watson's A-reduced Hamiltonian up to sixth order in I′ representation. The 2ν2 state was found to be unperturbed, the excited state parameters being closely related to those of ν2.
Resumo:
Fourier transform IR spectra in the ν2 and ν3 regions between 800 and 1500 cm−1 have been measured of H16OF with a resolution of 0.007 cm−1 and of H18OF and DOF with a resolution of 0.040 cm−1. Ground state constants have been improved for H16OF and have been obtained for the first time for H18OF. Parameters of the v2 = 1 and v3 = 1 excited states have been determined from rovibrational analyses of ca. 1000 ν2/ν3 lines which were fitted with σ 0.36, 4.5, and 7.6 × 10−3 cm−1 for H16OF, H18OF, and D16OF, respectively. Band centers of ν2/ν3 are 1353.40466(5)/889.07974(6), 1350.3976(5)/862.2967(7), and 1002.0083(9)/891.0014(15) cm−1, respectively, for the three isotopic species. While ν2 and ν3 are sufficiently separated in HOF to be treated independently, a Coriolis resonance is evident in DOF, the interaction constant ξ23c = 0.19073(16) cm−1 being in agreement with the prediction from the harmonic force field.
Resumo:
CD40 ligation triggers IL-12 production by dendritic cells (DC) in vitro. Here, we demonstrate that CD40 cross-linking alone is not sufficient to induce IL-12 production by DC in vivo. Indeed, resting DC make neither the IL-12 p35 nor IL-12 p40 subunits and express only low levels of CD40. Nevertheless, after DC activation by microbial stimuli that primarily upregulate IL-12 p40 and augment CD40 expression, CD40 ligation induces a significant increase in IL-12 p35 and IL-12 p70 heterodimer production. Similarly, IL-12 p70 is produced during T cell activation in the presence but not in the absence of microbial stimuli. Thus, production of bioactive IL-12 by DC can be amplified by T cell–derived signals but must be initiated by innate signals.
Resumo:
Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.
Resumo:
BACKGROUND: The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. METHODS: Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. RESULTS: We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. CONCLUSION: These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.
Resumo:
The stable signal peptide (SSP) of the lymphocytic choriomeningitis virus surface glycoprotein precursor has several unique characteristics. The SSP is unusually long, at 58 amino acids, and contains two hydrophobic domains, and its sequence is highly conserved among both Old and New World arenaviruses. To better understand the functions of the SSP, a panel of point and deletion mutants was created by in vitro mutagenesis to target the highly conserved elements within the SSP. We were also able to confirm critical residues required for separate SSP functions by trans-complementation. Using these approaches, it was possible to resolve functional domains of the SSP. In characterizing our SSP mutants, we discovered that the SSP is involved in several distinct functions within the viral life cycle, beyond translocation of the viral surface glycoprotein precursor into the endoplasmic reticulum lumen. The SSP is required for efficient glycoprotein expression, posttranslational maturation cleavage of GP1 and GP2 by SKI-1/S1P protease, glycoprotein transport to the cell surface plasma membrane, formation of infectious virus particles, and acid pH-dependent glycoprotein-mediated cell fusion.
Resumo:
Extending the season of production and improving the scheduling of ornamental crops are key commercial objectives for nurserymen. In some woody species, the period in which cuttings can be rooted successfully is transient, thus limiting the opportunities for scheduled production. Optimum rooting often occurs in early- to mid-summer coinciding with periods of active shoot growth. The relationship between this shoot activity and root initiation was investigated in Cotinus coggygria 'Royal Purple'. Shoot growth on stock plants was manipulated by altering the photoperiod or light quality. Results indicated there were seasonal effects on rooting, but the importance of shoot activity varied with harvest time. Cuttings harvested in August had high rooting percentages, irrespective of photoperiod, and despite shoot growth terminating in response to the short-day treatment. In contrast, by September, rooting percentage was highest in cuttings from plants under long-days, which had maintained greatest shoot growth activity. Cotinus shoots grown in vitro under 16 h days showed reduced shoot growth and increased rooting competence compared with shoots grown under 8 h days. Growing stock plants under polythene films, which altered the amount and quality of the incident light, influenced the rooting of cuttings harvested in August, but no consistent relationship with shoot activity was apparent. From a practical viewpoint, maintaining shoot activity late in the season may prolong the period for propagation by cuttings; but, from a scientific viewpoint, processes associated with an active shoot apex do not provide a complete explanation of seasonal variation in rooting.
Resumo:
We have performed the first completely ab initio lattice dynamics calculation of the full orthorhombic cell of polyethylene using periodic density functional theory in the local density approximation (LDA) and the generalized gradient approximation (GGA). Contrary to current perceptions, we show that LDA accurately describes the structure whereas GGA fails. We emphasize that there is no parametrization of the results. We then rigorously tested our calculation by computing the phonon dispersion curves across the entire Brillouin zone and comparing them to the vibrational spectra, in particular the inelastic neutron scattering (INS) spectra, of polyethylene (both polycrystalline and aligned) and perdeuteriopolyethylene. The F-point frequencies (where the infrared and Raman active modes occur) are in good agreement with the latest low temperature data. The near-perfect reproduction of the INS spectra, gives confidence in the results and allows Lis to deduce a number of physical properties including the elastic moduli, parallel and perpendicular to the chain. We find that the Young's modulus for an infinitely long, perfectly crystalline polyethylene is 360.2 GPa at 0 K. The highest experimental value is 324 GPa, indicating that current high modulus fibers are similar to 90% of their maximum possible strength.
Resumo:
Carbon tetrafluoride (CF4) is included as a greenhouse gas within the Kyoto Protocol. There are significant discrepancies in the reported integrated infrared (IR) absorption cross section of CF4 leading to uncertainty in its contribution to climate change. To reduce this uncertainty, the IR spectrum of CF4 was measured in two different laboratories, in 0 933 hPa of air diluent at 296 +/- 2K over the wavelength range 600-3700 cm(-1) using spectral resolutions of 0.03 or 0.50 cm(-1). There was no discernable effect of diluent gas pressure or spectral resolution on the integrated IR absorption, and a value of the integrated absorption cross section of (1.90 +/- 0.17) x 10(-16) cm(2) molecule(-1) cm(-1) was derived. The radiative efficiency (radiative forcing per ppbv) and GWP (relative to CO2) of CF4 were calculated to be 0.102 W m(-2) ppbv(-1) and 7200 (100 year time horizon). The GWP for CF4 calculated herein is approximately 30% greater than that given by the Intergovernmental Panel on Climate Change (IPCC) [ 2002] partly due to what we believe to be an erroneously low value for the IR absorption strength of CF4 assumed in the calculations adopted by the IPCC. The radiative efficiency of CF4 is predicted to decrease by up to 40% as the CF4 forcing starts to saturate and overlapping absorption by CH4, H2O, and N2O in the atmosphere increases over the period 1750-2100. The radiative forcing attributable to increased CF4 levels in the atmosphere from 1750 to 2000 is estimated to be 0.004 W m(-2) and is predicted to be up to 0.033 W m(-2) from 2000 to 2100, dependent on the scenario.
Resumo:
Six Ru(II) complexes of formula [Ru(L)(2)(PPh3)(2)] have been prepared where LH = 4-(aryl)thiosemicarbazones of thiophen-2-carbaldehyde. X-ray crystal structures of five of the complexes are reported. In all the complexes ruthenium is six coordinate with a distorted octahedral cis-P-2, cis-N-2, trans-S-2 donor environment, and each of the two thiosemicarbazone ligands are coordinated in a bidentate fashion forming a four membered chelate ring. The complexes undergo a one-electron oxidation at similar to 0.5 V vs. Ag/AgCl. The EPR spectrum of the electrochemically oxidized solution at 100 K shows a rhombic signal, with transitions at g(1) = 2.27, g(2) = 2.00 and g(3) = 1.80. DFT calculations on one of the complexes suggest that there is 35% ruthenium and 17% sulfur orbital contribution to the HOMO. These results suggest that the assignment of metal atom oxidation states in these compounds is not unambiguous. (C) 2009 Elsevier Ltd. All rights reserved.