109 resultados para Semiarid grassland ecosystem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term effects of the elevated atmospheric CO2 on biosphere have been in focus of research since the last few decades. In this experiment undisturbed soil monoliths of loess grassland were exposed to an elevated CO2 environment (two-times the ambient CO2 level) for a period of six years with the aid of the open top chamber method. Control without a chamber and CO2 elevation was applied as well. Elevated CO2 level had very little impact oil soil food web. It did not influence either root and microbial biomass or microbial and nematode community structure. The only significant response was that density of the bacterial feeder genus Heterocephalobus increased in the chamber with elevated CO2 concentration. Application of the open top chambers initiated more changes on nematodes than the elevated CO2 level. Open top chamber (OTC) method decreased nematode density (total and plant feeder as well) to less than half of the original level. Negative effect was found on the genus level in the case of fungal feeder Aphelenchoides, plant feeder Helicotylenchus and Paratylenchus. It is very likely that the significantly lower belowground root biomass and partly its decreased quality reflected by the increased C/N ratio are the main responsible factors for the lower density of the plant feeder nematodes in the plots of chambers. According to diversity profiles, MI and MI(2-15) parameters, nematode communities in the open top chambers (both on ambient and elevated CO2 level) seem to be more structured than those under normal circumstances six years after start of the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question: What is the value of using Rhinanthus minor in grassland restoration and can restrictions on its establishment be overcome? Location: England (United Kingdom). Methods: Two experiments were established to determine the efficacy of inoculating R. minor on a suite of four agriculturally improved grasslands and the efficacy of using R. minor in grassland restoration. In Experiment 1, the effect of herbicide gap creation on the establishment and persistence of R. minor in grasslands ranging in productivity was investigated with respect to sward management. In Exp. 2, R. minor was sown at 1000 seeds/m(2) in conjunction with a standard meadow mix over a randomized plot design into Lolium perenne grassland of moderate productivity. The treatment of scarification was investigated as a treatment to promote R. minor. Results: Gap size had a significant role in the establishment and performance of R. minor, especially the 30 cm diameter gaps (Exp. 1). However, R. minor failed to establish long-term persistent populations in all of the agriculturally improved grasslands. In Exp. 2, establishment of R. minor was increased by scarification and its presence was associated with a significant increase in Shannon diversity and the number of sown and unsown species. Values of grass above-ground biomass were significantly lower in plots sown with R. minor, but values of total above-ground biomass (including R. minor) and forb biomass (not including R. minor) were not affected. Conclusions: The value of introducing R. minor into species-poor grassland to increase diversity has been demonstrated, but successful establishment was dependent on grassland type. The scope for using R. minor in grassland restoration schemes is therefore conditional, although establishment can be enhanced through disturbance such as sward scarification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques that increase the biodiversity value of species-poor grassland are required if conservation targets aimed at reversing the decline in species-rich grassland are to be met. This study investigated the diversification of swards dominated by Lolium perenne by testing the efficacies of two treatments applied to reduce competitive exclusion of species introduced as seed. The 'biological' treatment was the addition of the hemiparasitic plant species introduced as seed. The 'biological' treatment was the application of a selective graminicide, fluazifop-P-butyl (Fusilade 250EW). Changes in plant community composition were monitored for a period of 2 years. Values of plant species richness increased significantly between years regardless of treatment, but to a greater extent in plots sown with R. minor. The number of established sown species and their richness and tended to promote unsown species rather than those introduced as seed. Overall, the R. minor treatment was associated with the greatest impact on sward composition, facilitating establishment and development of the introduced species and promoting forb abundance. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>1. Management of lowland mesotrophic grasslands in north-west Europe often makes use of inorganic fertilizers, high stocking densities and silage-based forage systems to maximize productivity. The impact of these practices has resulted in a simplification of the plant community combined with wide-scale declines in the species richness of grassland invertebrates. We aim to identify how field margin management can be used to promote invertebrate diversity across a suite of functionally diverse taxa (beetles, planthoppers, true bugs, butterflies, bumblebees and spiders). 2. Using an information theoretic approach we identify the impacts of management (cattle grazing, cutting and inorganic fertilizer) and plant community composition (forb species richness, grass species richness and sward architecture) on invertebrate species richness and body size. As many of these management practices are common to grassland systems throughout the world, understanding invertebrate responses to them is important for the maintenance of biodiversity. 3. Sward architecture was identified as the primary factor promoting increased species richness of both predatory and phytophagous trophic levels, as well as being positively correlated with mean body size. In all cases phytophagous invertebrate species richness was positively correlated with measures of plant species richness. 4. The direct effects of management practices appear to be comparatively weak, suggesting that their impacts are indirect and mediated though the continuous measures of plant community structure, such as sward architecture or plant species richness. 5. Synthesis and applications. By partitioning field margins from the remainder of the field, economically viable intensive grassland management can be combined with extensive management aimed at promoting native biodiversity. The absence of inorganic fertilizer, combined with a reduction in the intensity of both cutting and grazing regimes, promotes floral species richness and sward architectural complexity. By increasing sward architecture the total biomass of invertebrates also increased (by c. 60% across the range of sward architectural measures seen in this study), increasing food available for higher trophic levels, such as birds and mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Declines in area and quality of species-rich mesotrophic and calcareous grasslands have occurred all across Europe.While the European Union has promoted schemes to restore these grasslands, the emphasis for management has remained largely focused on plants. Here we focus on restoration of the phytophagous beetles of these grasslands. Although local management, particularly that which promotes the establishment of host plants, is key to restoration success, dispersal limitation is also likely to be an important limiting factor during the restoration of phytophagous beetle assemblages. 2. Using a 3-year multi-site experiment, we investigated how restoration success of phytophagous beetles was affected by hay-spreading management (intended to introduce target plant species), success in restoration of the plant communities and the landscape context within which restoration was attempted. 3. Restoration success of the plants was greatest where green hay spreading had been used to introduce seeds into restoration sites. Beetle restoration success increased over time, although hayspreading had no direct effect. However, restoration success of the beetles was positively correlated with restoration success of the plants. 4. Overall restoration success of the phytophagous beetles was positively correlated with the proportion of species-rich grassland in the landscape, as was the restoration success of the polyphagous beetles. Restoration success for beetles capable of flight and those showing oligophagous host plant specialism were also positively correlated with connectivity to species-rich grasslands. There was no indication that beetles not capable of flight showed greater dependence on landscape scale factors than flying species. 5. Synthesis and applications. Increasing the similarity of the plant community at restoration sites to target species-rich grasslands will promote restoration success for the phytophagous beetles. However, landscape context is also important, with restoration being approximately twice as successful in those landscapes containing high as opposed to low proportions of species-rich grassland. By targeting grassland restoration within landscapes containing high proportions of species-rich grassland, dispersal limitation problems associated with restoration for invertebrate assemblages are more likely to be overcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By 2030, the world’s human population could rise to 8 billion people and world food demand may increase by 50%. Although food production outpaced population growth in the 20th century, it is clear that the environmental costs of these increases cannot be sustained into the future. This challenges us to re-think the way we produce food. We argue that viewing food production systems within an ecosystems context provides the basis for 21st century food production. An ecosystems view recognises that food production systems depend on ecosystem services but also have ecosystem impacts. These dependencies and impacts are often poorly understood by many people and frequently overlooked. We provide an overview of the key ecosystem services involved in different food production systems, including crop and livestock production, aquaculture and the harvesting of wild nature. We highlight the important ecosystem impacts of food production systems, including habitat loss and degradation, changes to water and nutrient cycles across a range of scales, and biodiversity loss. These impacts often undermine the very ecosystem services on which food production systems depend, as well as other ecosystem services unrelated to food. We argue that addressing these impacts requires us to re-design food production systems to recognise and manage the limitations on production imposed by the ecosystems within which they are embedded, and increasingly embrace a more multifunctional view of food production systems and associated ecosystems. In this way, we should be able to produce food more sustainably whilst inflicting less damage on other important ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arthropods that have a direct impact on crop production (i.e. pests, natural enemies and pollinators) can be influenced by both local farm management and the context within which the fields occur in the wider landscape. However, the contributions and spatial scales at which these drivers operate and interact are not fully understood, particularly in the developing world. The impact of both local management and landscape context on insect pollinators and natural enemy communities and on their capacity to deliver related ecosystem services to an economically important tropical crop, pigeonpea was investigated. The study was conducted in nine paired farms across a gradient of increasing distance to semi-native vegetation in Kibwezi, Kenya. Results show that proximity of fields to semi-native habitats negatively affected pollinator and chewing insect abundance. Within fields, pesticide use was a key negative predictor of pollinator, pest and foliar active predator abundance. On the contrary, fertilizer application significantly enhanced pollinator and both chewing and sucking insect pest abundance. At a 1 km spatial scale of fields, there were significant negative effects of the number of semi-native habitat patches within fields dominated by mass flowering pigeonpea on pollinators abundance. For service provision, a significant decline in fruit set when insects were excluded from flowers was recorded. This study reveals the interconnections of pollinators, predators and pests with pigeonpea crop. For sustainable yields and to conserve high densities of both pollinators and predators of pests within pigeonpea landscapes, it is crucial to target the adoption of less disruptive farm management practices such as reducing pesticide and fertilizer inputs.