58 resultados para Semi-arid conditions
Resumo:
Fibre, crude protein and tannin concentrations were measured in browse species from the semi-arid region of Northeast Brazil during the dry and wet seasons. The effects of oven-, sun- and shade-drying and of urea treatment were also determined. Crude protein (CP) content varied from 103 to 161 g/kg dry matter (DM) and the browses had similar CP content in the two seasons (during 2002) (102-161 and 107-153 g/kg DM in the wet and dry seasons, respectively). Total tannin concentrations ranged from 13 to 201 g/kg DM amongst the browses and were higher in the dry season. A 30-d treatment with urea reduced extractable tannins significantly (P < 0.05). The urea treatment was also most effective at reducing the in vitro effects of tannins compared to the other drying treatments. This was demonstrated by measuring the effect of polyethylene glycol (PEG) on gas production. Addition of PEG increased gas production of oven- (81.4%), sun- (78.5%) and shade-dried (76.7%) samples much more compared to urea treated samples (10.9%). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Since the 1990s, international water sector reforms have centred heavily on economic and market approaches. In regard to water resources management, tradable water rights have been promoted, often supported by the neoliberal model adopted in Chile. Chile's 1981 Water Code was reformed to comprise a system of water rights that could be freely traded with few restrictions. International financial institutions have embraced the Chilean model, claiming that it results in more efficient water use, and potentially fosters social and environmental benefits. However, in Chile the Water Code is deeply contested. It has been criticised for being too permissive and has produced a number of problems in practice. Moreover, attempts to modify it have become the focus of a lengthy polemic debate. This paper employs a political ecology perspective to explore the socio-environmental outcomes of water management in Chile, drawing on a case study of agriculture in the semi-arid Norte Chico. The case illustrates how large-scale farmers exert greater control over water, while peasant farmers have increasingly less access. I argue that these outcomes are facilitated by the mode of water management implemented within the framework of the Water Code. Through this preliminary examination of social equity and the environmental aspects of water resources management in Chile, I suggest that the omission of these issues from the international debates on water rights markets is a cause for concern.
Resumo:
This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.
Resumo:
A number of recent articles emphasize the fundamental importance of taphonomy and formation processes to interpretation of plant remains assemblages, as well as the value of interdisciplinary approaches to studies of environmental change and ecological and social practices. This paper examines ways in which micromorphology can contribute to integrating geoarchaeology and archaeobotany in analysis of the taphonomy and context of plant remains and ecological and social practices. Micromorphology enables simultaneous in situ study of diverse plant materials and thereby traces of a range of depositional pathways and histories. In addition to charred plant remains, also often preserved in semi-arid environments are plant impressions, phytoliths and calcitic ashes. These diverse plant remains are often routinely separated and extracted from their depositional context or lost using other analytical techniques, thereby losing crucial evidence on taphonomy, formation processes and contextual associations, which are fundamental to all subsequent interpretations. Although micromorphological samples are small in comparison to bulk flotation samples of charred plant remains, their size is similar to phytolith and pollen samples. In this paper, key taphonomic issues are examined in the study of: fuel; animal dung, animal management and penning; building materials; and specific activities, including food storage and preparation and ritual, using selected case-studies from early urban settlements in the Ancient Near East. Microarchaeological residues and experimental archaeology are also briefly examined.
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
This paper presents the development of an export coefficient model to characterise the rates and sources of P export from land to water in four reservoir systems located in a semi-arid rural region in southern of Portugal. The model was developed to enable effective management of these important water resource systems under the EU Water Framework Directive. This is the first time such an approach has been fully adapted for the semi-arid systems typical of Mediterranean Europe. The sources of P loading delivered to each reservoir from its catchment were determined and scenario analysis was undertaken to predict the likely impact of catchment management strategies on the scale of rate of P loading delivered to each water body from its catchment. The results indicate the importance of farming and sewage treatment works/collective septic tanks discharges as the main contributors to the total diffuse and point source P loading delivered to the reservoirs, respectively. A reduction in the total P loading for all study areas would require control of farming practices and more efficient removal of P from human wastes prior to discharge to surface waters. The scenario analysis indicates a strategy based solely on reducing the agricultural P surplus may result in only a slow improvement in water quality, which would be unlikely to support the generation of good ecological status in reservoirs. The model application indicates that a reduction of P-inputs to the reservoirs should first focus on reducing P loading from sewage effluent discharges through the introduction of tertiary treatment (P-stripping) in all major residential areas. The fully calibrated export coefficient modelling approach transferred well to semi-arid regions, with the only significant limitation being the availability of suitable input data to drive the model. Further studies using this approach in semi-arid catchments are now needed to increase the knowledge of nutrient export behaviours in semi-arid regions.
Resumo:
A systematic evaluation of agricultural factors affecting the adaptation of the tropical oil plant Jatropha curcas L. to the semi-arid subtropical climate in Northeastern Mexico has been conducted. The factors studied include plant density and topology, as well as fungi and virus abundances. A multiple regression analysis shows that total fruit production can be well predicted by the area per plant and the total presence of fungi. Four common herbicides and a mechanical weed control measure were established at a dedicated test array and their impact on plant productivity was assessed.
Resumo:
Arabia is a key area for the dispersal of anatomically modern humans (AMH, Homo sapiens) out of Africa. Given its modern hostile environment, the question of the timing of dispersal is also a question of climatic conditions. Fresh water and food were crucial factors facilitating AMH expansions into Arabia. By dating relict lake deposits, four periods of lake formation were identified: one during the early Holocene and three during the late Pleistocene centered ca. 80, ca. 100, and ca. 125 ka. Favorable environmental conditions during these periods allowed AMH to migrate across southern Arabia. Between ca. 75 and 10.5 ka, arid conditions prevailed and turned southern Arabia into a natural barrier for human dispersal. Thus, expansion of AMH through the southern corridor into Asia must have taken place before 75 ka, possibly in multiple dispersals.
Resumo:
Soils most obviously contribute to food security in their essential role in crop and fodder production, so affecting the local availability of particular foods. They also have a direct influence on the ability to distribute food, the nutritional value of some foods and, in some societies, the access to certain foods through local processes of allocation and preferences. The inherent fertility of some soils is greater than that of others, so that crop yields vary greatly under semi-natural conditions. Husbandry practices, including the use of manures and fertilisers, have evolved to improve biological, chemical and physical components of soil fertility and thereby increase crop production. The challenge for the future is to sustain soil fertility in ways that increase the yield per unit area while simultaneously avoiding other detrimental environmental consequences. This will require increased effort to develop practices that use inputs such as nutrients, water and energy more efficiently. Opportunities to achieve this include adopting more effective ways to apply water and nutrients, adopting tillage practices that promote water infiltration and increase of organic matter, and breeding to improve the effectiveness of root systems in utilising soil-based resources.
Resumo:
The response of ten atmospheric general circulation models to orbital forcing at 6 kyr BP has been investigated using the BIOME model, which predicts equilibrium vegetation distribution, as a diagnostic. Several common features emerge: (a) reduced tropical rain forest as a consequence of increased aridity in the equatorial zone, (b) expansion of moisture-demanding vegetation in the Old World subtropics as a consequence of the expansion of the Afro–Asian monsoon, (c) an increase in warm grass/shrub in the Northern Hemisphere continental interiors in response to warming and enhanced aridity, and (d) a northward shift in the tundra–forest boundary in response to a warmer growing season at high northern latitudes. These broadscale features are consistent from model to model, but there are differences in their expression at a regional scale. Vegetation changes associated with monsoon enhancement and high-latitude summer warming are consistent with palaeoenvironmental observations, but the simulated shifts in vegetation belts are too small in both cases. Vegetation changes due to warmer and more arid conditions in the midcontinents of the Northern Hemisphere are consistent with palaeoenvironmental data from North America, but data from Eurasia suggests conditions were wetter at 6 kyr BP than today. The models show quantitatively similar vegetation changes in the intertropical zone, and in the northern and southern extratropics. The small differences among models in the magnitude of the global vegetation response are not related to differences in global or zonal climate averages, but reflect differences in simulated regional features. Regional-scale analyses will therefore be necessary to identify the underlying causes of such differences among models.
Resumo:
Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less dry than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, wet runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.
Resumo:
High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64–55 and 40–32 ka BP, and two major humid phases ~54–45 and 28–20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard–Oeschger (D–O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.
Resumo:
Carbon and nitrogen stable isotope ratios of 45 human and 23 faunal bone collagen samples were measured to study human diet and the management of domestic herbivores in past Jordan, contrasting skeletal remains from the Middle and Late Bronze Age and the Late Roman and Byzantine periods from the site of Ya'amūn near Irbid. The isotope data demonstrate that the management of the sheep and goats changed over time, with the earlier animals consuming more plants from semi-arid habitats, possibly because of transhumant herding strategies. The isotope data for fish presented here are the first from archaeological contexts from the Southern Levant. Although fish of diverse provenance was available at the site, human diet was predominately based on terrestrial resources and there was little dietary variability within each time-period. Isotopic variation between humans from different time-periods can mostly be explained by ‘baseline shifts’ in the available food sources; however, it is suggested that legumes may have played a more significant role in Middle and Late Bronze Age diet than later on.
Resumo:
In the Western Australian wheatbelt, the restoration of native eucalypt forests for managing degraded agricultural landscapes is a critical part of managing dryland salinity and rebuilding biodiversity. Such reforestation will also sequester carbon. Whereas most investigative emphasis has been on carbon stored in biomass, the effects of reforestation on soil organic carbon (SOC) stores and fertility are not known. Two 26 year old reforestation experiments with four Eucalyptus species (E. cladocalyx var nana, E. occidentalis, E. sargentii and E. wandoo) were compared with agricultural sites (Field). SOC stores (to 0.3 m depth) ranged between 33 and 55 Mg ha−1, with no statistically significant differences between tree species and adjacent farmland. Farming comprised crop and pasture rotations. In contrast, the reforested plots contained additional carbon in the tree biomass (23–60 Mg ha−1) and litter (19–34 Mg ha−1), with the greatest litter accumulation associated with E. sargentii. Litter represented between 29 and 56% of the biomass carbon and the protection or utilization of this litter in fire-prone, semi-arid farmland will be an important component of carbon management. Exch-Na and Exch-Mg accumulated under E. sargentii and E. occidentalis at one site. The results raise questions about the conclusions of SOC sequestration studies following reforestation based on limited sampling and reiterate the importance of considering litter in reforestation carbon accounts.
Resumo:
A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.