43 resultados para Search and retrieval
Resumo:
Accessing information, which is spread across multiple sources, in a structured and connected way, is a general problem for enterprises. A unified structure for knowledge representation is urgently needed to enable integration of heterogeneous information resources. Topic Maps seem to be a solution for this problem. The Topic Map technology enables connecting information, through concepts and relationships, and their occurrences across multiple systems. In this paper, we address this problem by describing a framework built on topic maps, to support the current need of knowledge management. New approaches for information integration, intelligent search and topic map exploration are introduced within this framework.
Resumo:
In a distributed environment remote entities, usually the producers or consumers of services, need a means to publish their existence so that clients, needing their services, can search and find the appropriate ones that they can then interact with directly. The publication of information is via a registry service, and the interaction is via a high-level messaging service. Typically, separate libraries provide these two services. Tycho is an implementation of a wide-area asynchronous messaging framework with an integrated distributed registry. This will free developers from the need to assemble their applications from a range of potentially diverse middleware offerings, which should simplify and speed application development and more importantly allow developers to concentrate on their own domain of expertise. In the first part of the paper we outline our motivation for producing Tycho and then review a number of registry and messaging systems popular with the Grid community. In the second part of the paper we describe the architecture and implementation of Tycho. In the third part of the paper we present and discuss various performance tests that were undertaken to compare Tycho with alternative similar systems. Finally, we summarise and conclude the paper and outline future work.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt for bridging the so called "semantic gap". The proposed image feature vector model is fundamentally underpinned by an automatic image labelling framework, called Collaterally Cued Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts accompanying the images with the state-of-the-art low-level visual feature extraction techniques for automatically assigning textual keywords to image regions. A subset of the Corel image collection was used for evaluating the proposed method. The experimental results indicate that our semantic-level visual content descriptors outperform both conventional visual and textual image feature models.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
In a decision feedback equalizer (DFE), the structural parameters, including the decision delay, the feedforward filter (FFF), and feedback filter (FBF) lengths, must be carefully chosen, as they greatly influence the performance. Although the FBF length can be set as the channel memory, there is no closed-form expression for the FFF length and decision delay. In this letter, first we analytically show that the two-dimensional search for the optimum FFF length and decision delay can be simplified to a one-dimensional search and then describe a new adaptive DFE where the optimum structural parameters can be self-adapted.
Resumo:
In this paper a support vector machine (SVM) approach for characterizing the feasible parameter set (FPS) in non-linear set-membership estimation problems is presented. It iteratively solves a regression problem from which an approximation of the boundary of the FPS can be determined. To guarantee convergence to the boundary the procedure includes a no-derivative line search and for an appropriate coverage of points on the FPS boundary it is suggested to start with a sequential box pavement procedure. The SVM approach is illustrated on a simple sine and exponential model with two parameters and an agro-forestry simulation model.
Resumo:
Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.
Resumo:
The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Irrelevant sound accompanying the processes of encoding and retrieval of verbal events impairs memory performance. However, the degree of impairment is highly dependent on a range of factors. Some of them lie outside rememberers’ control, like the semantic content of distracting sound or the nature of a test used to assess memory. Others, like a strategy used to encode memoranda, rest under control of the rememberer. In this paper the factors that modulate memory impairment are outlined and discussed in terms of multiple mechanisms contributing to memory impairment under auditory distraction. The mechanisms of a capture of attention by distraction, interference of automatic seriation of distraction and voluntary seriation of memoranda, semantic inhibition of distraction, and blocking of memoranda by semantically related distracters are described. Results that demonstrate how these mechanisms determine memory impairment under auditory distraction are also discussed. Particular attention is devoted to the possibility of voluntary control over the workings of these mechanisms and the conditions under which the negative impact of auditory distraction upon memory performance could be minimised.
Resumo:
A universal systems design process is specified, tested in a case study and evaluated. It links English narratives to numbers using a categorical language framework with mathematical mappings taking the place of conjunctions and numbers. The framework is a ring of English narrative words between 1 (option) and 360 (capital); beyond 360 the ring cycles again to 1. English narratives are shown to correspond to the field of fractional numbers. The process can enable the development, presentation and communication of complex narrative policy information among communities of any scale, on a software implementation known as the "ecoputer". The information is more accessible and comprehensive than that in conventional decision support, because: (1) it is expressed in narrative language; and (2) the narratives are expressed as compounds of words within the framework. Hence option generation is made more effective than in conventional decision support processes including Multiple Criteria Decision Analysis, Life Cycle Assessment and Cost-Benefit Analysis.The case study is of a participatory workshop in UK bioenergy project objectives and criteria, at which attributes were elicited in environmental, economic and social systems. From the attributes, the framework was used to derive consequences at a range of levels of precision; these are compared with the project objectives and criteria as set out in the Case for Support. The design process is to be supported by a social information manipulation, storage and retrieval system for numeric and verbal narratives attached to the "ecoputer". The "ecoputer" will have an integrated verbal and numeric operating system. Novel design source code language will assist the development of narrative policy. The utility of the program, including in the transition to sustainable development and in applications at both community micro-scale and policy macro-scale, is discussed from public, stakeholder, corporate, Governmental and regulatory perspectives.
Resumo:
We compare measurements of integrated water vapour (IWV) over a subarctic site (Kiruna, Northern Sweden) from five different sensors and retrieval methods: Radiosondes, Global Positioning System (GPS), ground-based Fourier-transform infrared (FTIR) spectrometer, ground-based microwave radiometer, and satellite-based microwave radiometer (AMSU-B). Additionally, we compare also to ERA-Interim model reanalysis data. GPS-based IWV data have the highest temporal coverage and resolution and are chosen as reference data set. All datasets agree reasonably well, but the ground-based microwave instrument only if the data are cloud-filtered. We also address two issues that are general for such intercomparison studies, the impact of different lower altitude limits for the IWV integration, and the impact of representativeness error. We develop methods for correcting for the former, and estimating the random error contribution of the latter. A literature survey reveals that reported systematic differences between different techniques are study-dependent and show no overall consistent pattern. Further improving the absolute accuracy of IWV measurements and providing climate-quality time series therefore remain challenging problems.
Resumo:
The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.