40 resultados para Screening and identification of vibrios
Resumo:
Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.
Resumo:
A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.
Resumo:
almonella enterica serovar Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of Salmonella Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in energy demand, while growing in glucose minimal medium. By grouping reactions with similar flux responses, a sub-network of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions, that when removed from the genome-scale model interfered with energy and biomass generation. 11 such sets were found to be essential for the production of biomass precursors. Experimental investigation of 7 of these showed that knock-outs of the associated genes resulted in attenuated growth for 4 pairs of reactions, while 3 single reactions were shown to be essential for growth.
Resumo:
There is a critical need for screening and diagnostic tools (SDT) for autism spectrum conditions (ASC) in regional languages in South Asia. To address this, we translated four widely used SDT (Social Communication Disorder Checklist, Autism Spectrum Quotient, Social Communication Questionnaire, and Autism Diagnostic Observation Schedule) into Bengali and Hindi, two main regional languages (∼ 360 million speakers), and tested their usability in children with and without ASC. We found a significant difference in scores between children with ASC (n = 45 in Bengali, n = 40 in Hindi) and typically developing children (n = 43 in Bengali, n = 42 in Hindi) on all SDTs. These results demonstrate that these SDTs are usable in South Asia, and constitute an important resource for epidemiology research and clinical diagnosis in the region.
Resumo:
Liquid Chromatography Mass Spectrometry (LC-MS) was used to obtain glucosinolate and flavonol content for 35 rocket accessions and commercial varieties. 13 glucosinolates and 11 flavonol compounds were identified. Semi-quantitative methods were used to estimate concentrations of both groups of compounds. Minor glucosinolate composition was found to be different between accessions; concentrations varied significantly. Flavonols showed differentiation between genera, with Diplotaxis accumulating quercetin glucosides and Eruca accumulating kaempferol glucosides. Several compounds were detected in each genus that have only previously been reported in the other. We highlight how knowledge of phytochemical content and concentration can be used to breed new, nutritionally superior varieties. We also demonstrate the effects of controlled environment conditions on the accumulations of glucosinolates and flavonols and explore the reasons for differences with previous studies. We stress the importance of consistent experimental design between research groups to effectively compare and contrast results.
Resumo:
Flowering time and seed size are traits related to domestication. However, identification of domestication-related loci/genes of controlling the traits in soybean is rarely reported. In this study, we identified a total of 48 domestication-related loci based on RAD-seq genotyping of a natural population comprising 286 accessions. Among these, four on chromosome 12 and additional two on chromosomes 11 and 15 were associated with flowering time, and four on chromosomes 11 and 16 were associated with seed size. Of the five genes associated with flowering time and the three genes associated with seed size, three genes Glyma11g18720, Glyma11g15480 and Glyma15g35080 were homologous to Arabidopsis genes, additional five genes were found for the first time to be associated with these two traits. Glyma11g18720 and Glyma05g28130 were co-expressed with five genes homologous to flowering time genes in Arabidopsis, and Glyma11g15480 was co-expressed with 24 genes homologous to seed development genes in Arabidopsis. This study indicates that integration of population divergence analysis, genome-wide association study and expression analysis is an efficient approach to identify candidate domestication-related genes.
Resumo:
Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs.
Resumo:
In vivo, enzymatic reduction of some protein disulfide bonds, allosteric disulfide bonds, provides an important level of structural and functional regulation. The free cysteine residues generated can be labeled by maleimide reagents, including biotin derivatives, allowing the reduced protein to be detected or purified. During the screening of monoclonal antibodies for those specific for the reduced forms of proteins, we isolated OX133, a unique antibody that recognizes polypeptide resident, N-ethylmaleimide (NEM)-modified cysteine residues in a sequence-independent manner. OX133 offers an alternative to biotin-maleimide reagents for labeling reduced/alkylated antigens and capturing reduced/alkylated proteins with the advantage that NEM-modified proteins are more easily detected in mass spectrometry, and may be more easily recovered than is the case following capture with biotin based reagents.
Resumo:
Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein–ligand interactions has become extremely important to help determine a protein’s functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein–ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.
Resumo:
Soybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline-salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 traitassociated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene Glyma15 g17480 (GmZTL3). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.