61 resultados para Satellite Monitoring Systems
Resumo:
Rising nitrate levels have been observed in UK Chalk catchments in recent decades, with concentrations now approaching or exceeding legislated maximum values in many areas. In response, strategies seeking to contain concentrations through appropriate land management are now in place. However, there is an increasing consensus that Chalk systems, a predominant landscape type over England and indeed northwest Europe, can retard decades of prior nitrate loading within their deep unsaturated zones. Current levels may not fully reflect the long-term impact of present-day practices, and stringent land management controls may not be enough to avert further medium-term rises. This paper discusses these issues in the context of the EU Water Framework Directive, drawing on data from recent experimental work and a new model (INCA-Chalk) that allows the impacts of different land use management practices to be explored. Results strongly imply that timelines for water quality improvement demanded by the Water Framework directive are not realistic for the Chalk, and give an indication of time-scales over which improvements might be achieved. However, important unresolved scientific issues remain, and further monitoring and targeted data collection is recommended to reduce prediction uncertainties and allow cost effective strategies for mitigation to be designed and implemented. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Recent work has suggested that for some tasks, graphical displays which visually integrate information from more than one source offer an advantage over more traditional displays which present the same information in a separated format. Three experiments are described which investigate this claim using a task which requires subjects to control a dynamic system. In the first experiment, the integrated display is compared to two separated displays, one an animated mimic diagram, the other an alphanumeric display. The integrated display is shown to support better performance in a control task, but experiment 2 shows that part of this advantage may be due to its analogue nature. Experiment 3 considers performance on a fault detection task, and shows no difference between the integrated and separated displays. The paper concludes that previous claims made for integrated displays may not generalize from monitoring to control tasks.
Resumo:
Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.
Resumo:
The effectiveness of development assistance has come under renewed scrutiny in recent years. In an era of growing economic liberalisation, research organisations are increasingly being asked to account for the use of public funds by demonstrating achievements. However, in the natural resources (NR) research field, conventional economic assessment techniques have focused on quantifying the impact achieved rather understanding the process that delivered it. As a result, they provide limited guidance for planners and researchers charged with selecting and implementing future research. In response, “pathways” or logic models have attracted increased interest in recent years as a remedy to this shortcoming. However, as commonly applied these suffer from two key limitations in their ability to incorporate risk and assess variance from plan. The paper reports the results of a case study that used a Bayesian belief network approach to address these limitations and outlines its potential value as a tool to assist the planning, monitoring and evaluation of development-orientated research.
Resumo:
The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society
Resumo:
We are soon approaching the pervasive-era ofcomputing, where computers are embedded intoobjects and the environment in order to provide newservices to users. Significant levels of data arerequired in order for these services to function asintended, and it is this collection of data which werefer to as ubiquitous monitoring. Existing monitoringtechniques have often been known to cause undesirableeffects, and it is anticipated that ubiquitousmonitoring, with its increased coverage, will lead toincreases in their occurrence and impact. To date, theeffects of ubiquitous monitoring on human behaviourhave not been sufficiently investigated, furtherincreasing the risk of undesirable effects. We propose apreliminary model consisting of a series of factorsbelieved to influence human behavior and augmentedby the Theory of Planned Behaviour. This model mayallow us to understand, predict, and therefore preventany undesirable effects caused by ubiquitousmonitoring.
The TAMORA algorithm: satellite rainfall estimates over West Africa using multi-spectral SEVIRI data
Resumo:
A multi-spectral rainfall estimation algorithm has been developed for the Sahel region of West Africa with the purpose of producing accumulated rainfall estimates for drought monitoring and food security. Radar data were used to calibrate multi-channel SEVIRI data from MSG, and a probability of rainfall at several different rain-rates was established for each combination of SEVIRI radiances. Radar calibrations from both Europe (the SatPrecip algorithm) and Niger (TAMORA algorithm) were used. 10 day estimates were accumulated from SatPrecip and TAMORA and compared with kriged gauge data and TAMSAT satellite rainfall estimates over West Africa. SatPrecip was found to produce large overestimates for the region, probably because of its non-local calibration. TAMORA was negatively biased for areas of West Africa with relatively high rainfall, but its skill was comparable to TAMSAT for the low-rainfall region climatologically similar to its calibration area around Niamey. These results confirm the high importance of local calibration for satellite-derived rainfall estimates. As TAMORA shows no improvement in skill over TAMSAT for dekadal estimates, the extra cloud-microphysical information provided by multi-spectral data may not be useful in determining rainfall accumulations at a ten day timescale. Work is ongoing to determine whether it shows improved accuracy at shorter timescales.
Resumo:
Progress is reported in the development of a new synthesis method for the design of filters and coatings for use in spaceborne infrared optics. This method uses the Golden Section optimization routine to make a search, using designated dielectric thin film combinations, for the coating design which fulfills the required spectral requirements. The final design is that which uses the least number of layers for the given thin film materials in the starting design. This synthesis method has successfully been used to design broadband anti-reflection coatings on infrared substrates. The 6 micrometers to 18 micrometers anti-reflection coating for the germanium optics of the HIRDLS instrument, to be flown on the NASA EOS-Chem satellite, is given as an example. By correctly defining the target function to describe any specific type of filter in the optimization part of the method, this synthesis method may be used to design general filters for use in spaceborne infrared optics.
Resumo:
1. Closed Ecological Systems (CES) are small manmade ecosystems which do not have any material exchange with the surrounding environment. Recent ecological and technological advances enable successful establishment and maintenance of CES, making them a suitable tool for detecting and measuring subtle feedbacks and mechanisms. 2. As a part of an analogue (physical) C cycle modelling experiment, we developed a non-intrusive methodology to control the internal environment and to monitor atmospheric CO2 concentration inside 16 replicated CES. Whilst maintaining an air-tight seal of all CES, this approach allowed for access to the CO2 measuring equipment for periodic re-calibration and repairs. 3. To ensure reliable cross-comparison of CO2 observations between individual CES units and to minimise the cost of the system, only one CO2 sampling unit was used. An ADC BioScientific OP-2 (open-path) analyser mounted on a swinging arm was passing over a set of 16 measuring cells. Each cell was connected to an individual CES with air continuously circulating between them. 4. Using this setup, we were able to continuously measure several environmental variables and CO2 concentration within each closed system, allowing us to study minute effects of changing temperature on C fluxes within each CES. The CES and the measuring cells showed minimal air leakage during an experimental run lasting, on average, 3 months. The CO2 analyser assembly performed reliably for over 2 years, however an early iteration of the present design proved to be sensitive to positioning errors. 5. We indicate how the methodology can be further improved and suggest possible avenues where future CES based research could be applied.