55 resultados para SURFACTANT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Yor" is a traditional sausage like product widely consumed in Thailand. Its textures are usually set by steaming, in this experiment ultra-high pressure was used to modify the product. Three types of hydrocolloid; carboxymethylcellulose (CMC), locust bean gum (LBG) and xanthan gum, were added to minced ostrich meat batter at concentration of 0-1% and subjected to high pressure 600 Mpa, 50 degrees C, 40 min. The treated samples were analysed for storage (G) and loss (G '') moduli by dynamic oscillatory testing as well as creep compliance for control stress measurement. Their microstructures using confocal microscopy were also examined. Hydrocolloid addition caused a significant (P < 0.05) decrease in both the G' and G '' moduli. However the loss tangent of all samples remained unchanged. Addition of hydrocolloids led to decreases in the gel network formation but appears to function as surfactant materials during the initial mixing stage as shown by the microstructure. Confocal microscopy suggested that the size of the fat droplets decreased with gum addition. The fat droplets were smallest on the addition of xanthan gum and increased in the order CMC, LBG and no added gum, respectively. Creep parameters of ostrich yors with four levels of xanthan gum addition (0.50%, 0.75%, 1.00% and 1.25%) showed an increase in the instantaneous compliance (J(0)), the retarded compliance (J(1)) and retardation time (lambda(1)) but a decrease in the viscosity (eta(0)) with increasing levels of addition. The results also suggested that the larger deformations used during creep testing might be more helpful in assessing the mechanical properties of the product than the small deformations used in oscillatory rheology. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annatto dyes are widely used in food and are finding increasing interest also for their application in the pharmaceutical and cosmetics industry. Bixin is the main pigment extracted from annatto seeds and accounts for 80% of the carotenoids in the outer coat of the seeds; norbixin being the water-soluble form of the bixin. Typically annatto dyes are extracted from the seeds by mechanical means or solutions of alkali, edible oil or organic solvents, or a combination of the two depending on the desired final product. In this work CGAs are investigated as an alternative separation method for the recovery of norbixin from a raw extraction solution of annatto pigments in KOH. A volume of CGAs generated from a cationic surfactant (CTAB) solution is mixed with a volume of annatto solution and when the mixture is allowed to settle it separates into the top aphron phase and the bottom liquid phase. Potassium norbixinate presented in the annatto solution will interact with the surfactant in the aphron phase, which results in the effective separation of norbixin. Recovery= 94% was achieved at a CTAB to norbixin molar ratio of 3.3. In addition a mechanism of separation is proposed here based on the separation results with the cationic surfactant and an anionic surfactant (bis-2-ethyl hexyl sulfosuccinate, AOT) and measurements of surfactant to norbixin ratio in the aphron phase; electrostatic interactions between the surfactant and norbixin molecules result in the fort-nation of a coloured complex and effective separation of norbixin. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surfactant properties of aqueous protein mixtures ( ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation. uorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two- photon excitation. uorescence microscopy of nest foams treated with fluorescent marker ( anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H2O/D2O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied ( 0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of similar to20 Angstrom, a middle layer of similar to30 Angstrom, and a more diffuse submerged layer projecting some 25 Angstrom into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of single wall peptide nanotubes is presented for the model surfactant-like peptide A6K. Capillary flow alignment of a sample in the nematic phase at high concentration in water leads to oriented X-ray diffraction patterns. Analysis of these, accompanied by molecular dynamics simulations, suggests the favourable self-assembly of antiparallel peptide dimers into beta-sheet ribbons that wrap helically to form the nanotube wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use atomistic molecular dynamics simulations to probe the effects of added sodium chloride (NaCl) and sodium salicylate (NaSal) salts on the spherical-to-threadlike micelle shape transition in aqueous solutions of cetyltrimethylammonium chloride (CTAC) surfactants. Long threadlike micelles are found to be unstable and break into spherical micelles at low concentrations or NaCl, but remain stable for 20 ns above a threshold value of [NaCl] approximate to 3.0 M, which is about 2.5 times larger than the experimental salt concentration at which the transition between spherical and rodlike micelles occurs. The chloride counterions associate weakly oil the surface of the CTAC micelles with the degree of counterion dissociation decreasing slightly with increasing [NaCl] on spherical micelles, but dropping significantly on the threadlike micelles tit high [NaCl]. This effect indicates that the electrolyte ions drive the micellar shape transition by screening the electrostatic repulsions between the micellar headgroups, The aromatic salicylate counterions, on the other hand, penetrate inside the micelle with their hydrophilic groups staying in the surfactant headgroup region and the hydrophobic groups partially embedded into the hydrophobic core of the micelle. The strong association of the salicylate ions with the surfactant headgroups leads to dense packing of the surfactant molecules, which effectively reduces the surface area per surfactant, and increases intramicellar ordering of the surfactant headgroups, favoring the formation of long threadlike micelles. Simulation predictions of the geometric and electrostatic properties of the spherical and threadlike micelles are in good agreement with experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of amphiphilic peptides is reviewed. The review covers surfactant-like peptides with amphiphilicity arising from the sequence of natural amino acids, and also peptide amphiphiles (PAs) in which lipid chains are attached to hydrophilic peptide sequences containing charged residues. The influence of the secondary structure on the self-assembled structure and vice versa is discussed. For surfactant-like peptides structures including fibrils, nanotubes, micelles and vesicles have been reported. A particularly common motif for PAs is beta-sheet based fibrils, although other structures have been observed. In these structures, the peptide epitope is presented at the surface of the nanostructure, providing remarkable bioactivity. Recent discoveries of potential, and actual, applications of these materials in biomedicine and bionanotechnology are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly in solution of puroindoline-a (Pin-a), an amphiphilic lipid binding protein from common wheat, was investigated by small angle neutron scattering, dynamic light scattering and size exclusion chromatography. Pin-a was found to form monodisperse prolate ellipsoidal micelles with a major axial radius of 112 +/- 4.5 A ˚ and minor axial radius of 40.4 +/- 0.18 A ˚ . These protein micelles were formed by the spontaneous self-assembly of 38 Pin-a molecules in solution and were stable over a wide pH range (3.5–11) and at elevated temperatures (20–65 degC). Pin-a micelles could be disrupted upon addition of the non-ionic surfactant dodecyl-b-maltoside, suggesting that the protein self-assembly is driven by hydrophobic forces, consisting of intermolecular interactions between Trp residues located within a well-defined Trp-rich domain of Pin-a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B. subtilis under certain types of media and fermentation conditions can produce surfactin, a biosurfactant which belongs to the lipopeptide class. Surfactin has exceptional surfactant activity, and exhibits some interesting biological characteristics such as antibacterial activity, antitumoral activity against ascites carcinoma cells, and a hypocholesterolemic activity that inhibits cAMP phosphodiesterase, as well as having anti-HIV properties. A cost effective recovery and purification of surfactin from fermentation broth using a two-step ultrafiltration (UF) process has been developed in order to reduce the cost of surfactin production. In this study, competitive adsorption of surfactin and proteins at the air-water interface was studied using surface pressure measurements. Small volumes of bovine serum albumin (BSA) and β-casein solutions were added to the air-water interface on a Langmuir trough and allowed to stabilise before the addition of surfactin to the subphase. Contrasting interfacial behaviour of proteins was observed with β-casein showing faster initial adsorption compared to BSA. On introduction of surfactin both proteins were displaced but a longer time were taken to displace β-casein. Overall the results showed surfactin were highly surface-active by forming a β-sheet structure at the air-water interface after reaching its critical micelle concentration (CMC) and were effective in removing both protein films, which can be explained following the orogenic mechanism. Results showed that the two-step UF process was effective to achieve high purity and fully functional surfactin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to investigate the separation of astaxanthin from the cells of Phaffia rhodozyma using colloidal gas aphrons (CGA), which are surfactant stabilized microbubbles, in a flotation column. It was reported in previous studies that optimum recoveries are achieved at conditions that favor electrostatic interactions. Therefore, in this study, CGA generated from the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) were applied to suspensions of cells pretreated with NaOH. The different operation modes (batch or continuous) and the effect of volumetric ratio of CGA to feed, initial concentration of feed, operating height, and flow rate of CGA on the separation of astaxanthin were investigated. The volumetric ratio was found to have a significant effect on the separation of astaxanthin for both batch and continuous experiments. Additionally, the effect of homogenization of the cells on the purity of the recovered fractions was investigated, showing that the homogenization resulted in increased purity. Moreover, different concentrations of surfactant were used for the generation of CGA for the recovery of astaxanthin on batch mode; it was found that recoveries up to 98% could be achieved using CGA generated from a CTAB solution 0.8 mM, which is below the CTAB critical micellar concentration (CMC). These results offer important information for the scale-up of the separation of astaxanthin from the cells of P. rhodozyma using CGA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGA) have previously been defined as surfactant stabilized gas microbubbles and characterized for a number of surfactants in terms of stability, gas holdup and bubble size even though there is no conclusive evidence of their structure (that is, orientation of surfactant molecules at the gas–liquid interface, thickness of gas–liquid interface, and/or number of surfactant layers). Knowledge of the structure would enable us to use these dispersions more efficiently for their diverse applications (such as for removal of dyes, recovery of proteins, and enhancement of mass transfer in bioreactors). This study investigates dispersion and structural features of CGA utilizing a range of novel predictive (for prediction of aphron size and drainage rate) and experimental (electron microscopy and X-ray diffraction) methods. Results indicate structural differences between foams and CGA, which may have been caused by a multilayer structure of the latter as suggested by the electron and X-ray diffraction analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of a non-ionic polymeric surfactant on the self-assembly of a peptide amphiphile (PA) that forms nanotapes is investigated using a combination of microscopic, scattering and spectroscopic techniques. Mixtures of Pluronic copolymer P123 with the PA C16-KTTKS in aqueous solution were studied at a fixed concentration of the PA at which it is known to self-assemble into extended nanotapes, but varying P123 concentration. We find that P123 can disrupt the formation of C16- KTTKS nanotapes, leading instead to cylindrical nanofibril structures. The spherical micelles formed by P123 at room temperature are disrupted in the presence of the PA. There is a loss of cloudiness in the solutions as the large nanotape aggregates formed by C16-KTTKS are broken up, by P123 solubilization. At least locally, b-sheet structure is retained, as confirmed by XRD and FTIR spectroscopy, even for solutions containing 20 wt% P123. This indicates, unexpectedly, that peptide secondary structure can be retained in solutions with high concentration of non-ionic surfactant. Selfassembly in this system exhibits slow kinetics towards equilibrium, the initial self-assembly being dependent on the order of mixing. Heating above the lipid chain melting temperature assists in disrupting trapped non-equilibrium states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surfactant-like peptide (Ala)6(Arg) is found to self-assemble into 3 nm-thick sheets in aqueous solution. Scanning transmission electron microscopy measurements of mass per unit area indicate a layer structure based on antiparallel dimers. At higher concentration the sheets wrap into unprecedented ultrathin helical ribbon and nanotube architectures.