34 resultados para SPIDER-MITES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current European Union regulatory risk assessment allows application of pesticides provided that recovery of nontarget arthropods in-crop occurs within a year. Despite the long-established theory of source-sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are restricted to plot-scale experiments. In the present study, the authors used agent-based modeling of 2 contrasting invertebrates, a spider and a beetle, to assess how the area of pesticide application and environmental half-life affect the assessment of recovery at the plot scale and impact the population at the landscape scale. Small-scale plot experiments were simulated for pesticides with different application rates and environmental half-lives. The same pesticides were then evaluated at the landscape scale (10 km × 10 km) assuming continuous year-on-year usage. The authors' results show that recovery time estimated from plot experiments is a poor indicator of long-term population impact at the landscape level and that the spatial scale of pesticide application strongly determines population-level impact. This raises serious doubts as to the utility of plot-recovery experiments in pesticide regulatory risk assessment for population-level protection. Predictions from the model are supported by empirical evidence from a series of studies carried out in the decade starting in 1988. The issues raised then can now be addressed using simulation. Prediction of impacts at landscape scales should be more widely used in assessing the risks posed by environmental stressors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arousing stimuli, either threat-related or pleasant, may be selected for priority at different stages within the processing stream. Here we examine the pattern of processing for non-task-relevant threatening (spiders: arousing to some) and pleasant stimuli (babies or chocolate: arousing to all) by recording the gaze of a spider Fearful and Non-fearful group while they performed a simple “follow the cross” task. There was no difference in first saccade latencies. Saccade trajectories showed a general hypervigilance for all stimuli in the Fearful group. Saccade landing positions corresponded to what each group would find arousing, such that the Fearful group deviated towards both types of images whereas the Non-fearful group deviated towards pleasant images. Secondary corrective saccade latencies away from threat-related stimuli were longer for the Fearful group (difficulty in disengaging) compared with the Non-fearful group. These results suggest that attentional biases towards arousing stimuli may occur at different processing stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mites are a highly diversified group of chelicerates (arthropods) adapted to a broad spectrum of habitats and diets, presenting extreme specificity to habitats. They are considered to be important indicators of environmental conditions including those modified by human beings. Therefore, they can inform about the environment where a corpse has been exposed to, about the route of specific merchandises, as well as about other applied aspects of forensic entomology. It is not rare the presence of species adapted to cadaveric environments. Jean Pierre Mégnin, forensic veterinarian considered pioneer in the development of forensic entomology, conscious about the importance of mites as forensic indicators, was the first including mites in the decomposition process. For Mégnin, wave six was formed by mites only. Due to the increasing interest of forensic experts in including these organisms in their analysis of trace evidence, as mites are one of the most ubiquitous organisms, we have developed standards for the sampling, conservation and custody of mite evidence of forensic interest.