44 resultados para SMALL ORGANIC-MOLECULES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetric hydrogenation of C=C bonds is of the highest importance in organic synthesis, and such reactions are currently carried out with organometallic homogeneous catalysts. Achieving heterogeneous metal-catalyzed hydrogenation, a highly desirable goal, necessitates forcing the crucial enantiodifferentiating step to take place at the metal surface. By synthesis and application of six chiral sulfide ligands that anchor robustly to Pd nanoparticles and resist displacement, we have for the first time accomplished heterogeneous enantioselective catalytic hydrogenation of isophorone. High resolution XPS data established that ligand adsorption from solution occurred exclusively on the Pd nanoparticles and not on the carbon support. All ligands contained a pyrrolidine nitrogen to enable their interaction with the isophorone substrate while the sulfide functionality provided the required interaction with the Pd surface. Enantioselective turnover numbers of up to similar to 100 product molecules per ligand molecule were found with a very large variation in asymmetric induction between ligands: observed enantiomeric excesses increased with increasing size of the alkyl group in the sulfide. This likely reflects varying degrees of ligand dispersion on the surface: bulky substituent groups hinder close approach of ligand molecules to each other, inhibiting close-packed island formation, favoring dispersion as separate molecules, and leading to effective asymmetric induction. Conversely, small substituents favor island formation leading to very low asymmetric induction. Enantioselective reaction most likely involves initial formation of an enamine or iminium species, confirmed by use of an analogous tertiary amine, which leads to racemic product. Ligand rigidity and resistance to self-assembled monolayer formation are important attributes that should be designed into improved chiral modifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanometer metal particles of tailored size (3-5 nm) and composition prepared via inverse microemulsion were encapsulated by ultrathin coatings (<2.5 nm) of inorganic porous aerogels covered with surface -OH groups. These composite materials formed metastable colloids in solvent(s), and the organic surfactant molecules were subsequently removed without leading to aggregation (the ethanolic colloid solution was shown to be stable against flocculation for at least weeks). We demonstrate that the totally inorganic-based composite colloids, after the removal of surfactant, can be anchored to conventional solid supports (gamma-alumina, carbons) upon mixing. Application of a high temperature resulted in the formation of strong covalent linkages between the colloids and the support because of the condensation of surface groups at the interface. Detailed characterizations (X-ray diffraction (XRD), pore analysis, transmission electron microscopy (TEM), CO chemisorption) and catalytic testing (butane combustion) showed that there was no significant metal aggregation from the fine metal particles individually coated with porous aerogel oxide. Most of these metal sites on the coated nanoparticles with and without support are fully accessible by small molecules hence giving extremely active metal catalysts. Thus, the product and technology described may be suitable to synthesize these precursor entities of defined metal sizes (as inks) for wash coat/impregnation applications in catalysis. The advantages of developing inorganic nanocomposite chemical precursors are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions in (molecular) organic crystalline solids have been shown to be important for exerting control that is unattainable over chemical transformations in solution. Such control has also been achieved for reactions within metal– organic cages. In these examples, the reactants are already in place within the crystals following the original crystal growth. The post-synthetic modification of metal–organic frameworks (MOFs and indeed reactions and catalysis within MOFs have been recently demonstrated; in these cases the reactants enter the crystals through permanent channels. Another growing area of interest within molecular solid-state chemistry is synthesis by mechanical co-grinding of solid reactants—often referred to as mechanochemistry. Finally, in a small number of reported examples, molecules also have been shown to enter nonporous crystals directly from the gas or vapor phase, but in only a few of these examples does a change in covalent bonding result, which indicates that a reaction occurs within the nonporous crystals. It is this latter type of highly uncommon reaction that is the focus of the present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of a hydrophobically modified fragment of the amyloid beta(A beta) peptide has been studied in methanol. The peptide FFKLVFF is based on A beta(16-20) extended at the N terminus by two phenylalanine residues. The formation of amyloid-type fibrils is confirmed by Congo Red staining, thioflavin T fluorescence and circular dichroism experiments. FTIR points to the formation of beta-sheet structures in solution and in dried films and suggests that aggregation occurs at low concentration and is not strongly affected by further increase in concentration, i.e. the peptide is a strong fibril-former in methanol. UV fluorescence experiments on unstained peptide and CD point to the importance of aromatic interactions between phenylalanine groups in driving aggregation into beta-sheets. The CD spectrum differs from that usually observed for beta-sheet assemblies formed by larger peptides or proteins and this is discussed for solutions in methanol and also trifluoroethanol. The fibril structure is imaged by transmission electron microscopy and scanning electron microscopy on dried samples and is confirmed by small-angle X-ray scattering experiments in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic−inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of l- and d-enantiomers aggregate into superstructures with chiral (−1 2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β−OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand for local food in the United States has significantly increased over the last decade. In an attempt to understand the drivers of this demand and how they have changed over time, we investigate the literature on organic and local foods over the last few decades. We focus our review on studies that allow comparison of characteristics now associated with both local and organic food. We summarize the major findings of these studies and their implications for understanding drivers of local food demand. Prior to the late 1990s, most studies failed to consider factors now associated with local food, and the few that included these factors found very little support for them. In many cases, the lines between local and organic were blurred. Coincident with the development of federal organic food standards, studies began to find comparatively more support for local food as distinct and separate from organic food. Our review uncovers a distinct turn in the demand for local and organic food. Before the federal organic standards, organic food was linked to small farms, animal welfare, deep sustainability, community support, and many other factors that are not associated with most organic foods today. Based on our review, we argue that demand for local food arose largely in response to corporate cooptation of the organic food market and the arrival of “organic lite.” This important shift in consumer preferences away from organic and toward local food has broad implications for the environment and society. If these patterns of consumer preferences prove to be sustainable, producers, activists, and others should be aware of the implications that these trends have for the food system at large.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning is a technique employed to produce nanoscale to microscale sized fibres by the application of a high voltage to a spinneret containing a polymer solution. Here we examine how small angle neutron scattering data can be modelled to analyse the polymer chain conformation. We prepared 1:1 blends of deuterated and hydrogenated atactic-polystyrene fibres from solutions in N, N-Dimethylformamide and Methyl Ethyl Ketone. The fibres themselves often contain pores or voiding within the internal structure on the length scales that can interfere with scattering experiments. A model to fit the scattering data in order to obtain values for the radius of gyration of the polymer molecules within the fibres has been developed, that includes in the scattering from the voids. Using this model we find that the radius of gyration is 20% larger than in the bulk state and the chains are slightly extended parallel to the fibre axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the latest contributions to over 20 years of research on organic food consumers. There is a general consensus in the literature on the reasons why people buy organic food. However, there is also a gap between consumers’ generally positive attitude toward organic food and their relatively low level of actual purchases. Product differentiation based on intangible features, such as credence attributes such as organic, in fast-moving consumer goods categories is enjoying rapid growth. However, there are many difficulties with research in this area, including the errors inherent in research that relies on consumer self-reporting methodologies. Further, in relation to organic food, there is a divergence between consumers’ perception of its superior health features and scientific evidence. Fresh fruits and vegetables are of vital importance to the organic sector as they are the entry point for many customers and account for one-third of sales. Further, although there is a small proportion of dedicated organic food buyers, most sales come from the majority of buyers who switch between conventional and organic food purchases. This paper identifies the practical implications for generic organic food marketing campaigns, as well as for increasing sales of specific products. It concludes with suggested priorities for further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first application of high field NMR spectroscopy (800 MHz for 1H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional 1H–1H TOCSY and 1H–13C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzes organic adoption decisions using a rich set of time-to-organic durations collected from avocado small-holders in Michoacán Mexico. We derive robust, intrasample predictions about the profiles of entry and exit within the conventional-versus-organic complex and we explore the sensitivity of these predictions to choice of functional form. The dynamic nature of the sample allows us to make retrospective predictions and we establish, precisely, the profile of organic entry had the respondents been availed optimal amounts of adoption-restraining resources. A fundamental problem in the dynamic adoption literature, hitherto unrecognized, is discussed and consequent extensions are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A metal organic framework of Cu-II, tartarate (tar) and 2,2'-bipyridyl (2,2'-bipy)], {[Cu(tar)(2,2'-bipy)]center dot 5H(2)O}(n)} (1) has been synthesized at the mild ambient condition and characterized by single crystal X-ray crystallography. In the compound, the Cu(2,2'-bipy) entities are bridged by tartarate ions which are coordinated to Cu-II by both hydroxyl and monodentate carboxylate oxygen to form a one-dimensional chain. The non-coordinated water molecules form ID water chains by edge-sharing cyclic water pentamers along with dangling water dimers. It shows reversible water expulsion upon heating. The water chains join the ID coordination polymeric chains to a 31) network through hydrogen-bond interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adoption of organic production and subsequent entry into the organic market is examined using Mexican avocado producers as a case study. Probit analysis of a sample of 183 small-scale (<15ha) producers from Michoacán suggests that adoption is positively influenced by management and economic factors (e.g. production costs per hectare and making inputs), but also by social factors (e.g. membership of a producers’ association). Experience in agriculture has a significant but negative effect. Effective policy design must be therefore be aware of both the economic and social complexities surrounding adoption decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioaccessibility tests can be used to improve contaminated land risk assessments. For organic pollutants a ‘sink’ is required within these tests to better mimic their desorption under the physiological conditions prevailing in the intestinal tract, where a steep diffusion gradient for the removal of organic pollutants from the soil matrix would exist. This is currently ignored in most PBET systems. By combining the CEPBET bioaccessibility test with an infinite sink, the removal of PAH from spiked solutions was monitored. Less than 10% of spiked PAH remained in the stomach media after 1 h, 10% by 4 h in the small intestine compartment and c.15% after 16 h in the colon. The addition of the infinite sink increased bioaccessibility estimates for field soils by a factor of 1.2–2.8, confirming its importance for robust PBET tests. TOC or BC were not the only factors controlling desorption of the PAH from the soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two semiconducting hybrid gallium selenides, [Ga6Se9(C6H14N2)4][H2O] (1) and [C6H14N2][Ga4Se6(C6H14N2)2] (2), were prepared using a solvothermal method in the pres-ence of 1,2-diaminocyclohexane (1,2-DACH). Both materials consist of neutral inorganic layers, in which 1,2-DACH is co-valently bonded to gallium. In (1), the organic amine acts as a monodentate and a bidentate ligand, while in (2) bidentate and uncoordinated 1,2-DACH molecules coexist.