165 resultados para Root competition
Resumo:
Second stage juveniles of Meloidogyne javanica were exposed to aqueous extracts of neem crude formulations (leaves and cake) at 10%, 5%, and 2.5% w/v and a refined product, Aza at 0.1% w/v. The 10% extracts of neem leaf and cake caused 83% and 85% immobility and 35% and 28% mortality, respectively. Aza caused neither immobility or mortality of juveniles. When egg masses were placed in extracts of these formulations, hatching did not occur at all the concentrations (10%, 5%, 2.5% and 1.25% w/v) of the crude formulations. When the treated egg masses were returned to water, the eggs resumed hatching. Aza did not affect the nematode hatching. In glasshouse experiments, soil application of neem formulations significantly reduced the invasion of tomato roots by root-knot nematodes but once the nematodes managed to invade them, no effect detected on their development. Soil applications of Aza at 0.05% and 0.1% w/v significantly reduced the invasion and delayed development of nematodes within tomato roots whereas 0.025% did not. There were significantly fewer egg masses on tomato roots exposed to single egg mass in neem amended soil as compared to control. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Neem leaves, neem cake (a by-product left after the extraction of oil from neem seed) and a commercially refined product aza (azadirachtin) extracted from seed were evaluated. Aqueous extracts of crude neem formulations used as a seedling dip treatment significantly reduced the number of females and egg masses in roots whereas the refined one did not. A split-root technique was used to demonstrate the translocation of active compounds within a plant and their subsequent effect on the development of nematodes. When applied to the root portion all formulations significantly reduced the number of egg masses and eggs per egg mass. Whereas on the untreated root portion, neem cake at 3% w/w and aza at 0.1% w/w significantly reduced the number of egg masses as compared with neem leaves at 3% w/w, aza at 0.05% and control. All the neern formulations significantly reduced the number of eggs per egg mass on' the untreated root portion. The effect of neem leaves and cake on the development of root-knot nematodes was tested at 2, 4, 6, 8, and 16 weeks after their application to soil. Even after 16 weeks all the treatments significantly reduced the galling index and number of egg masses but their effectiveness declined over time. After storing neem leaves, cake and aza for 8 months under ambient conditions the efficacy of neem leaves and aza, against root-knot nematodes, remained stable whereas that of cake declined. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Two types of neem formulations, crude and refined, were tested. The crude form was neem leaves and neem cakes (a by-product left after the extraction of oil from neem seed) and one of the neem-refined products was "aza". The protective and curative soil application of these formulations significantly reduced the number of egg masses and eggs per egg mass on tomato roots. Protective application of neem crude formulations (leaves and cake) did not reduce the invasion of juveniles whereas aza at 0.1% w/w did. Curative application of neem formulations significantly reduced the number of egg masses and eggs per egg mass as compared with the control. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Air-dried and 3 mm pore size sieved soil was amended with neem crude formulations (leaves and cake) @ 3% w/w and a refined product, aza @ 0.05 and 0.1 w/w. Three days after treatment, 500 eggs of M. javanica held in 2 ml water were added in each dish. In another experiment, soil was amended with neem crude formulations @ 10. 5, 2.5 and 1% w/w and refined formulation aza @ 0.025, 0.05, 0.1 and 0.5% w/w. Three days after amendment 1000 plus minus 21 freshly hatched J2 held in 3 ml water were added to the amended soil. Untreated soil was kept as control. Comparison of treatments means showed that all the neem formulations caused significant reduction of hatching. Neem crude formulations were more effective in reducing hatching as compared to commercial product aza. Among the crude formulations, neem leaves were most effective in reducing hatching. In other experiment all the doses of neem crude and refined formulations differed significantly with control in reducing the mobility of juveniles. It was observed that by increasing the dose of the formulations the mobility was reduced accordingly.
Resumo:
The effect of root-knot nematode (RKN) (Meloidogyne incognita) on Verticillium dahliae and Fusarium oxysporum f.sp. vasinfectum in cotton (Gossypium hirsutum) was investigated. Two different inoculation methods were used, one in which inoculum was added to the soil, so that nematode and fungal inoculum were in close proximity; the other, inoculation into the stem, whereby the two inocula were spatially separated. Invasion of the roots by RKN enhanced disease severity, as measured by the height of vascular browning in the stem, following inoculation with either wilt pathogen. The effect of RKN on Fusarium wilt was more pronounced than that on Verticillium wilt. Nematode-enhanced infection by F. oxysporum is a well known effect but there are few reports of enhanced infection by Verticillium due to RKN. Relative resistance of a number of cotton cultivars to both wilt diseases, as measured by height of vascular browning, was similar to the known field performance of the cultivars. The use of vascular browning as an estimate of disease severity was therefore validated.
Resumo:
Root-knot nematode [RKN] (Meloidogyne incognita) can increase the severity of Verticillium (V dahliae) and Fusarium (F oxysporum f.sp. vasinfectum) wilt diseases in cotton (Gossypium hirsutum). This study was conducted to determine some of the physiological responses caused by nematode invasion that might decrease resistance to vascular wilt diseases. The effect of RKN was investigated on spore germination and protein, carbohydrate and peroxidase content in the xylem fluids extracted from nematode-infected plants. Two cotton cultivars were used with different levels of resistance to both of the wilt pathogens. Spore germination was greater in the xylem fluids from nematode-infected plants than from nematode-free plants. The effect on spore germination was greater in the Fusarium-resistant cultivar (51%). Analysis of these fluids showed a decrease in total protein and carbohydrate levels for both wilt-resistant cultivars, and an increase in peroxidase concentration. Fluids from nematode-free plants of the Verticillium-resistant cultivar contained 46% more peroxidase than the Fusarium-resistant cultivar. The results provide further evidence that the effect of RKN on vascular wilt resistance is systemic and not only local. Changes in metabolites in the xylem pass from the root to the stem, accelerating disease development.
Resumo:
The effects of intraspecific and interspecific competition on a wide range of winter wheat cultivars were investigated in two consecutive split plot field experiments. Significant reductions of grain yield at greatly reduced seed rates were observed in the first experiment, whereas increasing crop density up to 380 plants m(-2) in the second experiment failed to produce a significant yield response due to compensation through increased ears and grains per plant at lower crop densities. Appreciable weed suppression and acceptable grain yield can be achieved at crop densities between 150 and 270 plants m(-2). Reductions in final yield due to weed competition occurred in both experiments; 11.7 and 13.6% for the first and second experiment, respectively, with the onset of weed competition occurring from tittering in the first experiment and from stem elongation in the second. The possibility of enhancing crop competitiveness for weed suppression and improved grain yield is discussed.
Resumo:
Sodium chloride-induced cell and nuclear degradation in the root meristems of sweetpotato [Ipomoea batatas (L.) Lam.] were determined using fluorescent microscopy and flow cytometry analysis. Two sweetpotato cultivars were grown in liquid Murashige and Skoog medium and subjected to 0 mM and 500 mM NaCl, with or without 15 mM CaCl2, for periods up to 24 h. Changes to the nuclei of root meristematic cells showed a similar pattern of damage to the nuclei using both fluorescent microscopy and flow cytometry analysis. Damage occurring after only a few hours was followed by nuclear degradation at 24 h. Flow cytometry histograms showed a reduction in G1 and G2 nuclei and an increase in degraded nuclei in NaCl-stressed roots. Salinity-induced nuclear degradation was alleviated by the addition of CaCl2.
Resumo:
Pseudomonas oryzihabitans, a bacterium associated with the entomopathogenic nematode Steinernema abbasi, was evaluated for its potential to colonise roots and thereby control a field population of root-knot nematodes. Immunological techniques were developed to detect root colonisation of P. oryzihabitans on tomato roots using a specific polyclonal antibody raised against vegetative bacterial cells. In vitro, bacterial cell filtrates were also shown significantly to inhibit juveniles hatching. In a glasshouse pot experiment, there were 22 and 82% fewer females in roots of plants treated with suspensions containing 10(3) and 10(6) cells ml(-1) of P oryzihabitans, respectively. In addition, there were significantly fewer egg masses produced; however, the numbers of eggs per egg mass did not differ significantly. The relationship between root colonisation and nematode control is discussed.
Resumo:
Most modern wheat cultivars contain major dwarfing genes, but their effects on root growth are unclear. Near-isogenic lines (NILs) containing Rht-B1b, Rht-D1b, Rht-B1c, Rht8c, Rht-D1c, and Rht12 were used to characterize the effects of semi-dwarfing and dwarfing alleles on root growth of 'Mercia' and 'Maris Widgeon' wheat cultivars. Wheat seedlings were grown in gel chambers, soil-filled columns, and in the field. Roots were extracted and length and dry mass measured. No significant differences in root length were found between semi-dwarfing lines and the control lines in any experiment, nor was there a significant difference between the root lengths of the two cultivars grown in the field. Total root length of the dwarf lines (Rht-B1c, Rht-D1c, and Rht12) was significantly different from that of the control although the effect was dependent on the experimental methodology; in gel chambers root length of dwarfing lines was increased by; 40% while in both soil media it was decreased (by 24-33%). Root dry mass was 22-30% of the total dry mass in the soil-filled column and field experiments. Root length increased proportionally with grain mass, which varied between NILs, so grain mass was a covariate for the analysis of variance. Although total root length was altered by dwarf lines, root architecture (average root diameter, lateral root: total root ratio) was not affected by reduced height alleles. A direct effect of dwarfing alleles on root growth during seedling establishment, rather than a secondary partitioning effect, was suggested by the present experiments.