42 resultados para Robot vision systems
Resumo:
In recent years researchers in the Department of Cybernetics have been developing simple mobile robots capable of exploring their environment on the basis of the information obtained from a few simple sensors. These robots are used as the test bed for exploring various behaviours of single and multiple organisms: the work is inspired by considerations of natural systems. In this paper we concentrate on that part of the work which involves neural networks and related techniques. These neural networks are used both to process the sensor information and to develop the strategy used to control the robot. Here the robots, their sensors, and the neural networks used and all described. 1.
Resumo:
This paper presents recent developments to a vision-based traffic surveillance system which relies extensively on the use of geometrical and scene context. Firstly, a highly parametrised 3-D model is reported, able to adopt the shape of a wide variety of different classes of vehicle (e.g. cars, vans, buses etc.), and its subsequent specialisation to a generic car class which accounts for commonly encountered types of car (including saloon, batchback and estate cars). Sample data collected from video images, by means of an interactive tool, have been subjected to principal component analysis (PCA) to define a deformable model having 6 degrees of freedom. Secondly, a new pose refinement technique using “active” models is described, able to recover both the pose of a rigid object, and the structure of a deformable model; an assessment of its performance is examined in comparison with previously reported “passive” model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence. Typical applications for this work include robot surveillance and navigation tasks.
Resumo:
For individuals with upper-extremity motor disabilities, the head-stick is a simple and intuitive means of performing manipulations because it provides direct proprioceptive information to the user. Through practice and use of inherent proprioceptive cues, users may become quite adept at using the head-stick for a number of different tasks. The traditional head-stick is limited, however, to the user's achievable range of head motion and force generation, which may be insufficient for many tasks. The authors describe an interface to a robot system which emulates the proprioceptive qualities of a traditional head-stick while also allowing for augmented end-effector ranges of force and motion. The design and implementation of the system in terms of coordinate transforms, bilateral telemanipulator architecture, safety systems, and system identification of the master is described, in addition to preliminary evaluation results.
Resumo:
This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.
Resumo:
The authors consider the problem of a robot manipulator operating in a noisy workspace. The manipulator is required to move from an initial position P(i) to a final position P(f). P(i) is assumed to be completely defined. However, P(f) is obtained by a sensing operation and is assumed to be fixed but unknown. The authors approach to this problem involves the use of three learning algorithms, the discretized linear reward-penalty (DLR-P) automaton, the linear reward-penalty (LR-P) automaton and a nonlinear reinforcement scheme. An automaton is placed at each joint of the robot and by acting as a decision maker, plans the trajectory based on noisy measurements of P(f).
Resumo:
Spiking neural networks are usually limited in their applications due to their complex mathematical models and the lack of intuitive learning algorithms. In this paper, a simpler, novel neural network derived from a leaky integrate and fire neuron model, the ‘cavalcade’ neuron, is presented. A simulation for the neural network has been developed and two basic learning algorithms implemented within the environment. These algorithms successfully learn some basic temporal and instantaneous problems. Inspiration for neural network structures from these experiments are then taken and applied to process sensor information so as to successfully control a mobile robot.
Resumo:
Food is fundamental to human wellbeing and development. Increased food production remains a cornerstone strategy in the effort to alleviate global food insecurity. But despite the fact that global food production over the past half century has kept ahead of demand, today around one billion people do not have enough to eat, and a further billion lack adequate nutrition. Food insecurity is facing mounting supply-side and demand-side pressures; key among these are climate change, urbanisation, globalisation, population increases, disease, as well as a number of other factors that are changing patterns of food consumption. Many of the challenges to equitable food access are concentrated in developing countries where environmental pressures including climate change, population growth and other socio-economic issues are concentrated. Together these factors impede people's access to sufficient, nutritious food; chiefly through affecting livelihoods, income and food prices. Food security and human development go hand in hand, and their outcomes are co-determined to a significant degree. The challenge of food security is multi-scalar and cross-sector in nature. Addressing it will require the work of diverse actors to bring sustained improvements inhuman development and to reduce pressure on the environment. Unless there is investment in future food systems that are similarly cross-level, cross-scale and cross-sector, sustained improvements in human wellbeing together with reduced environmental risks and scarcities will not be achieved. This paper reviews current thinking, and outlines these challenges. It suggests that essential elements in a successfully adaptive and proactive food system include: learning through connectivity between scales to local experience and technologies high levels of interaction between diverse actors and sectors ranging from primary producers to retailers and consumers, and use of frontier technologies.
Resumo:
This paper provides some additional evidence in support of the hypothesis that robot therapies are clinically beneficial in neurorehabilitation. Although only 4 subjects were included in the study, the design of the intervention and the measures were done so as to minimise bias. The results are presented as single case studies, and can only be interpreted as such due to the study size. The intensity of intervention was 16 hours and the therapy philosophy (based on Carr and Shepherd) was that coordinated movements are preferable to joint based therapies, and that coordinating distal movements (in this case grasps) helps not only to recover function in these areas, but has greater value since the results are immediately transferable to daily skills such as reach and grasp movements.
Resumo:
Awareness of emerging situations in a dynamic operational environment of a robotic assistive device is an essential capability of such a cognitive system, based on its effective and efficient assessment of the prevailing situation. This allows the system to interact with the environment in a sensible (semi)autonomous / pro-active manner without the need for frequent interventions from a supervisor. In this paper, we report a novel generic Situation Assessment Architecture for robotic systems directly assisting humans as developed in the CORBYS project. This paper presents the overall architecture for situation assessment and its application in proof-of-concept Demonstrators as developed and validated within the CORBYS project. These include a robotic human follower and a mobile gait rehabilitation robotic system. We present an overview of the structure and functionality of the Situation Assessment Architecture for robotic systems with results and observations as collected from initial validation on the two CORBYS Demonstrators.
Resumo:
During the past decade, brain–computer interfaces (BCIs) have rapidly developed, both in technological and application domains. However, most of these interfaces rely on the visual modality. Only some research groups have been studying non-visual BCIs, primarily based on auditory and, sometimes, on somatosensory signals. These non-visual BCI approaches are especially useful for severely disabled patients with poor vision. From a broader perspective, multisensory BCIs may offer more versatile and user-friendly paradigms for control and feedback. This chapter describes current systems that are used within auditory and somatosensory BCI research. Four categories of noninvasive BCI paradigms are employed: (1) P300 evoked potentials, (2) steady-state evoked potentials, (3) slow cortical potentials, and (4) mental tasks. Comparing visual and non-visual BCIs, we propose and discuss different possible multisensory combinations, as well as their pros and cons. We conclude by discussing potential future research directions of multisensory BCIs and related research questions