34 resultados para Rna Transcripts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powered by advances in electron tomography, recent studies have extended our understanding of how viruses construct "replication factories" inside infected cells. Their function, however, remains an area of speculation with important implications for human health. It is clear from these studies that whatever their purpose, organelle structure is dynamic (M. Ulasli, M. H. Verheije, C. A. de Haan, and F. Reggiori, Cell. Microbiol. 12:844-861, 2010) and intricate (K. Knoops, M. Kikkert, S. H. Worm, J. C. Zevenhoven-Dobbe, Y. van der Meer, et al., PLOS Biol. 6:e226, 2008). But by concentrating on medically important viruses, these studies have failed to take advantage of the genetic variation inherent in a family of viruses that is as diverse as the archaea, bacteria, and eukaryotes combined (C. Lauber, J. J. Goeman, M. del Carmen Parquet, P. T. Nga, E. J. Snijder, et al., PLOS Pathog. 9:e1003500, 2013). In this climate, Maier et al. (H. J. Maier, P. C. Hawes, E. M. Cottam, J. Mantell, P. Verkade, et al., mBio 4:e00801-13, 2013) explored the replicative structures formed by an avian coronavirus that appears to have diverged at an early point in coronavirus evolution and shed light on controversial aspects of viral biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA secondary structures in the 3'untranslated regions (3'UTR) of the viruses of the family Flaviviridae, previously identified as essential (promoters) or beneficial (enhancers) for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3'UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3'UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV). RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3'UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3'UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3'UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3' splice site (3'ss) A1 but lack splicing at 5'ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3'ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3'ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5'ss D2. Here we show that an intronic G run (G(I2)-1) represses the use of a second 5'ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of G(I2)-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Podosphaera aphanis, the causal agent of strawberry powdery mildew causes significant economic loss worldwide. Methods: We used the diploid strawberry species Fragaria vesca as a model to study plant pathogen interactions. RNA-seq was employed to generate a transcriptome dataset from two accessions, F. vesca ssp. vesca Hawaii 4 (HW) and F. vesca f. semperflorens Yellow Wonder 5AF7 (YW) at 1 d (1 DAI) and 8 d (8 DAI) after infection. Results: Of the total reads identified about 999 million (92%) mapped to the F. vesca genome. These transcripts were derived from a total of 23,470 and 23,464 genes in HW and YW, respectively from the three time points (control, 1 and 8 DAI). Analysis identified 1,567, 1,846 and 1,145 up-regulated genes between control and 1 DAI, control and 8 DAI, and 1 and 8 DAI, respectively in HW. Similarly, 1,336, 1,619 and 968 genes were up-regulated in YW. Also 646, 1,098 and 624 down-regulated genes were identified in HW, while 571, 754 and 627 genes were down-regulated in YW between all three time points, respectively. Conclusion: Investigation of differentially expressed genes (log2 fold changes �5) between control and 1 DAI in both HW and YW identified a large number of genes related to secondary metabolism, signal transduction; transcriptional regulation and disease resistance were highly expressed. These included flavonoid 3´-monooxygenase, peroxidase 15, glucan endo-1,3-β-glucosidase 2, receptor-like kinases, transcription factors, germin-like proteins, F-box proteins, NB-ARC and NBS-LRR proteins. This is the first application of RNA-seq to any pathogen interaction in strawberry