105 resultados para Rio high society
Resumo:
Siramesine (SRM) is a sigma-2 receptor agonist which has been recently shown to inhibit growth of cancer cells. Fluorescence spectroscopy experiments revealed two distinct binding sites for this drug in phospholipid membranes. More specifically, acidic phospholipids retain siramesine on the bilayer surface due to a high-affinity interaction, reaching saturation at an apparent 1:1 drug-acidic phospholipid stoichiometry, where after the drug penetrates into the hydrocarbon core of the membrane. This behavior was confirmed using Langmuir films. Of the anionic phospholipids, the highest affinity, comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction Of X-PA = 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 +/- 80 x 10(6). An MD simulation on the siramesine:PA interaction was in agreement with the above data. Taking into account the key role of PA as a signaling molecule promoting cell growth our results suggest a new paradigm for the development of anticancer drugs, viz. design of small molecules specifically scavenging phospholipids involved in the signaling cascades controlling cell behavior.
Resumo:
The prevalence of the metabolic syndrome (MetS), CVD and type 2 diabetes (T2D) is known to be higher in populations from the Indian subcontinent compared with the general UK population. While identification of this increased risk is crucial to allow for effective treatment, there is controversy over the applicability of diagnostic criteria, and particularly measures of adiposity in ethnic minorities. Diagnostic cut-offs for BMI and waist circumference have been largely derived from predominantly white Caucasian populations and, therefore, have been inappropriate and not transferable to Asian groups. Many Asian populations, particularly South Asians, have a higher total and central adiposity for a similar body weight compared with matched Caucasians and greater CVD risk associated with a lower BMI. Although the causes of CVD and T2D are multi-factorial, diet is thought to make a substantial contribution to the development of these diseases. Low dietary intakes and tissue levels of long-chain (LC) n-3 PUFA in South Asian populations have been linked to high-risk abnormalities in the MetS. Conversely, increasing the dietary intake of LC n-3 PUFA in South Asians has proved an effective strategy for correcting such abnormalities as dyslipidaemia in the MetS. Appropriate diagnostic criteria that include a modified definition of adiposity must be in place to facilitate the early detection and thus targeted treatment of increased risk in ethnic minorities.
Resumo:
This paper describes the design and manufacture of a set of precision cooled (210K) narrow-bandpass filters for the infrared imager and sounder on the Indian Space Research Organisation (ISRO) INSAT-3D meteorological satellite. We discuss the basis for the choice of multilayer coating designs and materials for 21 differing filter channels, together with their temperature-dependence, thin film deposition technologies, substrate metrology, and environmental durability performance. (C) 2008 Optical Society of America.
Resumo:
Aims: To study the development of resistance responses in Campylobacter jejuni to High Hydrostatic Pressure (HHP) treatments after the exposure to different stressful conditions that may be encountered in food processing environments, such as acid pH, elevated temperatures and cold storage. Methods and Results: C. jejuni cells in exponential and stationary growth phase were exposed to different sublethal stresses (acid, heat and cold shocks) prior to evaluate the development of resistance responses to HHP. For exponential-phase cells, neither of the conditions tested increased nor decreased HHP resistance of C. jejuni. For stationary-phase cells, acid and heat adaptation sensitized C. jejuni cells to the subsequent pressure treatment. On the contrary, cold-adapted stationary-phase cells developed resistance to HHP. Conclusions: Whereas C. jejuni can be classified as a stress sensitive microorganism, our findings have demonstrated that it can develop resistance responses under different stressing conditions. The resistance of stationary phase C. jejuni to HHP was increased after cells were exposed to cold temperatures. Significance and Impact of the Study: The results of this study contribute to a better knowledge of the physiology of C. jejuni and its survival to food preservation agents. Results here presented may help in the design of combined processes for food preservation based on HHP technology.
Resumo:
The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et
Resumo:
This paper describes the spectral design and manufacture of the narrow bandpass filters and 6-18µm broadband antireflection coatings for the 21-channel NASA EOS-AURA High Resolution Dynamics Limb Sounder (HIRDLS). A method of combining the measured spectral characteristics of each filter and antireflection coating, together with the spectral response of the other optical elements in the instrument to obtain a predicted system throughput response is presented. The design methods used to define the filter and coating spectral requirements, choice of filter materials, multilayer designs and deposition techniques are discussed.
Resumo:
A rapid thiolytic degradation and cleanup procedure was developed for analyzing tannins directly in chlorophyll-containing sainfoin (Onobrychis viciifolia) plants. The technique proved suitable for complex tannin mixtures containing catechin, epicatechin, gallocatechin, and epigallocatechin flavan-3-ol units. The reaction time was standardized at 60 min to minimize the loss of structural information as a result of epimerization and degradation of terminal flavan-3-ol units. The results were evaluated by separate analysis of extractable and unextractable tannins, which accounted for 63.6−113.7% of the in situ plant tannins. It is of note that 70% aqueous acetone extracted tannins with a lower mean degree of polymerization (mDP) than was found for tannins analyzed in situ. Extractable tannins had between 4 and 29 lower mDP values. The method was validated by comparing results from individual and mixed sample sets. The tannin composition of different sainfoin accessions covered a range of mDP values from 16 to 83, procyanidin/prodelphinidin (PC/PD) ratios from 19.2/80.8 to 45.6/54.4, and cis/trans ratios from 74.1/25.9 to 88.0/12.0. This is the first high-throughput screening method that is suitable for analyzing condensed tannin contents and structural composition directly in green plant tissue.
Resumo:
The assimilation of Doppler radar radial winds for high resolution NWP may improve short term forecasts of convective weather. Using insects as the radar target, it is possible to provide wind observations during convective development. This study aims to explore the potential of these new observations, with three case studies. Radial winds from insects detected by 4 operational weather radars were assimilated using 3D-Var into a 1.5 km resolution version of the Met Office Unified Model, using a southern UK domain and no convective parameterization. The effect on the analysis wind was small, with changes in direction and speed up to 45° and 2 m s−1 respectively. The forecast precipitation was perturbed in space and time but not substantially modified. Radial wind observations from insects show the potential to provide small corrections to the location and timing of showers but not to completely relocate convergence lines. Overall, quantitative analysis indicated the observation impact in the three case studies was small and neutral. However, the small sample size and possible ground clutter contamination issues preclude unequivocal impact estimation. The study shows the potential positive impact of insect winds; future operational systems using dual polarization radars which are better able to discriminate between insects and clutter returns should provided a much greater impact on forecasts.
Resumo:
The usefulness of any simulation of atmospheric tracers using low-resolution winds relies on both the dominance of large spatial scales in the strain and time dependence that results in a cascade in tracer scales. Here, a quantitative study on the accuracy of such tracer studies is made using the contour advection technique. It is shown that, although contour stretching rates are very insensitive to the spatial truncation of the wind field, the displacement errors in filament position are sensitive. A knowledge of displacement characteristics is essential if Lagrangian simulations are to be used for the inference of airmass origin. A quantitative lower estimate is obtained for the tracer scale factor (TSF): the ratio of the smallest resolved scale in the advecting wind field to the smallest “trustworthy” scale in the tracer field. For a baroclinic wave life cycle the TSF = 6.1 ± 0.3 while for the Northern Hemisphere wintertime lower stratosphere the TSF = 5.5 ± 0.5, when using the most stringent definition of the trustworthy scale. The similarity in the TSF for the two flows is striking and an explanation is discussed in terms of the activity of potential vorticity (PV) filaments. Uncertainty in contour initialization is investigated for the stratospheric case. The effect of smoothing initial contours is to introduce a spinup time, after which wind field truncation errors take over from initialization errors (2–3 days). It is also shown that false detail from the proliferation of finescale filaments limits the useful lifetime of such contour advection simulations to 3σ−1 days, where σ is the filament thinning rate, unless filaments narrower than the trustworthy scale are removed by contour surgery. In addition, PV analysis error and diabatic effects are so strong that only PV filaments wider than 50 km are at all believable, even for very high-resolution winds. The minimum wind field resolution required to accurately simulate filaments down to the erosion scale in the stratosphere (given an initial contour) is estimated and the implications for the modeling of atmospheric chemistry are briefly discussed.
Resumo:
Nonpolarizing edge filters have recently becmoe important to separate those IR gas bands used in atmospheric sensing into their P and R branches, namely, the v2 of C02 at a 15µm wavelength. Whereas Thelen has developed all necessary principles for the entire class of nonpolarizing filters it remains difficult to subsittute ither refractive indices (such as infrared) into a visible-region design or assess the effect on consequent performance.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
The differential phase (ΦDP) measured by polarimetric radars is recognized to be a very good indicator of the path integrated by rain. Moreover, if a linear relationship is assumed between the specific differential phase (KDP) and the specific attenuation (AH) and specific differential attenuation (ADP), then attenuation can easily be corrected. The coefficients of proportionality, γH and γDP, are, however, known to be dependent in rain upon drop temperature, drop shapes, drop size distribution, and the presence of large drops causing Mie scattering. In this paper, the authors extensively apply a physically based method, often referred to as the “Smyth and Illingworth constraint,” which uses the constraint that the value of the differential reflectivity ZDR on the far side of the storm should be low to retrieve the γDP coefficient. More than 30 convective episodes observed by the French operational C-band polarimetric Trappes radar during two summers (2005 and 2006) are used to document the variability of γDP with respect to the intrinsic three-dimensional characteristics of the attenuating cells. The Smyth and Illingworth constraint could be applied to only 20% of all attenuated rays of the 2-yr dataset so it cannot be considered the unique solution for attenuation correction in an operational setting but is useful for characterizing the properties of the strongly attenuating cells. The range of variation of γDP is shown to be extremely large, with minimal, maximal, and mean values being, respectively, equal to 0.01, 0.11, and 0.025 dB °−1. Coefficient γDP appears to be almost linearly correlated with the horizontal reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (KDP) and correlation coefficient (ρHV) of the attenuating cells. The temperature effect is negligible with respect to that of the microphysical properties of the attenuating cells. Unusually large values of γDP, above 0.06 dB °−1, often referred to as “hot spots,” are reported for 15%—a nonnegligible figure—of the rays presenting a significant total differential phase shift (ΔϕDP > 30°). The corresponding strongly attenuating cells are shown to have extremely high ZDR (above 4 dB) and ZH (above 55 dBZ), very low ρHV (below 0.94), and high KDP (above 4° km−1). Analysis of 4 yr of observed raindrop spectra does not reproduce such low values of ρHV, suggesting that (wet) ice is likely to be present in the precipitation medium and responsible for the attenuation and high phase shifts. Furthermore, if melting ice is responsible for the high phase shifts, this suggests that KDP may not be uniquely related to rainfall rate but can result from the presence of wet ice. This hypothesis is supported by the analysis of the vertical profiles of horizontal reflectivity and the values of conventional probability of hail indexes.