47 resultados para Residual autocovariance matrices
Resumo:
Due to the fact that probiotic cells need to be alive when they are consumed, culture-based analysis (plate count) is critical in ascertaining the quality (numbers of viable cells) of probiotic products. Since probiotic cells are typically stressed, due to various factors related to their production, processing and formulation, the standard methodology for total plate counts tends to underestimate the cell numbers of these products. Furthermore, products such as microencapsulated cultures require modifications in the release and sampling procedure in order to correctly estimate viable counts. This review examines the enumeration of probiotic bacteria in the following commercial products: powders, microencapsulated cultures, frozen concentrates, capsules, foods and beverages. The parameters which are specifically examined include: sample preparation (rehydration, thawing), dilutions (homogenization, media) and plating (media, incubation) procedures. Recommendations are provided for each of these analytical steps to improve the accuracy of the analysis. Although the recommendations specifically target the analysis of probiotics, many will apply to the analysis of commercial lactic starter cultures used in food fermentations as well.
Resumo:
In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .
Resumo:
A common procedure for studying the effects on cognition of repetitive transcranial magnetic stimulation (rTMS) is to deliver rTMS concurrent with task performance, and to compare task performance on these trials versus on trials without rTMS. Recent evidence that TMS can have effects on neural activity that persist longer than the experimental session itself, however, raise questions about the assumption of the transient nature of rTMS that underlies many concurrent (or "online") rTMS designs. To our knowledge, there have been no studies in the cognitive domain examining whether the application of brief trains of rTMS during specific epochs of a complex task may have effects that spill over into subsequent task epochs, and perhaps into subsequent trials. We looked for possible immediate spill-over and longer-term cumulative effects of rTMS in data from two studies of visual short-term delayed recognition. In 54 subjects, 10-Hz rTMS trains were applied to five different brain regions during the 3-s delay period of a spatial task, and in a second group of 15 subjects, electroencephalography (EEG) was recorded while 10-Hz rTMS was applied to two brain areas during the 3-s delay period of both spatial and object tasks. No evidence for immediate effects was found in the comparison of the memory probe-evoked response on trials that were vs. were not preceded by delay-period rTMS. No evidence for cumulative effects was found in analyses of behavioral performance, and of EEG signal, as a function of task block. The implications of these findings, and their relation to the broader literature on acute vs. long-lasting effects of rTMS, are considered.
Resumo:
The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.
Resumo:
If acid-sensitive drugs or cells are administered orally, there is often a reduction in efficacy associated with gastric passage. Formulation into a polymer matrix is a potential method to improve their stability. The visualization of pH within these materials may help better understand the action of these polymer systems and allow comparison of different formulations. We herein describe the development of a novel confocal laser-scanning microscopy (CLSM) method for visualizing pH changes within polymer matrices and demonstrate its applicability to an enteric formulation based on chitosan-coated alginate gels. The system in question is first shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has been claimed that protection by these materials is a result of buffering, but this has not been demonstrated. The visualization of pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective effect of the alginate-chitosan matrices is most likely due to a combination of buffering of acid as it enters the polymer matrix and the slowing of acid penetration.
Resumo:
The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here investigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The ‘‘Bolus’’ component of the residual circulation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the ‘‘Bolus’’ component into a ‘‘Seasonal’’, an ‘‘Eddy’’ and an ‘‘Inter-monthly’’ component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The ‘‘Seasonal’’ bolus cell is important at all latitudes near the surface. The ‘‘Eddy’’ bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The ‘‘Inter-monthly’’ bolus cell is important in all density classes and is maximal in the Brazil–Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow.
Resumo:
We consider a new class of non-self-adjoint matrices that arise from an indefinite self- adjoint linear pencil of matrices, and obtain the spectral asymptotics of the spectra as the size of the matrices diverges to infinity. We prove that the spectrum is qualitatively different when a certain parameter c equals 0, and when it is non-zero, and that certain features of the spectrum depend on Diophantine properties of c.
Resumo:
In this paper we develop and apply methods for the spectral analysis of non-selfadjoint tridiagonal infinite and finite random matrices, and for the spectral analysis of analogous deterministic matrices which are pseudo-ergodic in the sense of E. B. Davies (Commun. Math. Phys. 216 (2001), 687–704). As a major application to illustrate our methods we focus on the “hopping sign model” introduced by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443), in which the main objects of study are random tridiagonal matrices which have zeros on the main diagonal and random ±1’s as the other entries. We explore the relationship between spectral sets in the finite and infinite matrix cases, and between the semi-infinite and bi-infinite matrix cases, for example showing that the numerical range and p-norm ε - pseudospectra (ε > 0, p ∈ [1,∞] ) of the random finite matrices converge almost surely to their infinite matrix counterparts, and that the finite matrix spectra are contained in the infinite matrix spectrum Σ. We also propose a sequence of inclusion sets for Σ which we show is convergent to Σ, with the nth element of the sequence computable by calculating smallest singular values of (large numbers of) n×n matrices. We propose similar convergent approximations for the 2-norm ε -pseudospectra of the infinite random matrices, these approximations sandwiching the infinite matrix pseudospectra from above and below.
Resumo:
A parameterization of mesoscale eddies in coarse-resolution ocean general circulation models (GCM) is formulated and implemented using a residual-mean formalism. In that framework, mean buoyancy is advected by the residual velocity (the sum of the Eulerian and eddy-induced velocities) and modified by a residual flux which accounts for the diabatic effects of mesoscale eddies. The residual velocity is obtained by stepping forward a residual-mean momentum equation in which eddy stresses appear as forcing terms. Study of the spatial distribution of eddy stresses, derived by using them as control parameters to ‘‘fit’’ the residual-mean model to observations, supports the idea that eddy stresses can be likened to a vertical down-gradient flux of momentum with a coefficient which is constant in the vertical. The residual eddy flux is set to zero in the ocean interior, where mesoscale eddies are assumed to be quasi-adiabatic, but is parameterized by a horizontal down-gradient diffusivity near the surface where eddies develop a diabatic component as they stir properties horizontally across steep isopycnals. The residual-mean model is implemented and tested in the MIT general circulation model. It is shown that the resulting model (1) has a climatology that is superior to that obtained using the Gent and McWilliams parameterization scheme with a spatially uniform diffusivity and (2) allows one to significantly reduce the (spurious) horizontal viscosity used in coarse resolution GCMs.
Resumo:
Wernicke’s aphasia occurs following a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used fMRI to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered following damage to the classical comprehension regions. Twelve participants with Wernicke’s aphasia and twelve control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and ROI analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an “over-activation” in comparison to control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results concord with models which indicate that the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Resumo:
Evidence is presented that the performance of the rationally designed MALDI matrix 4-chloro-α-cyanocinnamic acid (ClCCA) in comparison to its well-established predecessor α-cyano-4-hydroxycinnamic acid (CHCA) is significantly dependent on the sample preparation, such as the choice of the target plate. In this context, it becomes clear that any rational designs of MALDI matrices and their successful employment have to consider a larger set of physicochemical parameters, including sample crystallization and morphology/topology, in addition to parameters of basic (solution and/or gas-phase) chemistry.
Resumo:
In order to achieve a safe swallowing in patients with dysphagia, liquids must be thickened. In this work, two commercial starch based thickeners dissolved in water, whole milk, apple juice and tomato juice were studied. The thickeners were Resource®, composed of modified maize starch and Nutilis®, composed of modified maize starch and gums. They were formulated at two different concentrations corresponding to nectar- and pudding-like consistencies. Influence of composition, concentration and food matrix on rheological properties and structure of the resulting pastes were analysed. Viscoelastic measurements and microscopic observations of the thickeners dissolved in water revealed structural differences due to the presence of gums. When the thickeners were dissolved in the other food matrices significant statistical interactions were found between the matrix and the thickener-type in both the viscoelastic and flow parameters. The most relevant differences were observed for the nectar-like consistency with Nutilis® thickener in milk and apple juice. These samples had lower zero viscosity values and higher loss tangent values, that corresponded to weaker structured systems. Light microscopy images showed that the matrix formed by swollen starch granules was interrupted by the presence of gums. The structure of the matrices in pudding-like formulations became more continuous irrespectively of the matrix employed, and also differences in viscoelasticity among samples diminished. Although differences were observed in zero shear viscosity values among samples, the viscosity of the beverages at 50 s−1 – commonly used as a reference for swallowing – was similar for all samples regardless of the matrix used.
Resumo:
Sparse coding aims to find a more compact representation based on a set of dictionary atoms. A well-known technique looking at 2D sparsity is the low rank representation (LRR). However, in many computer vision applications, data often originate from a manifold, which is equipped with some Riemannian geometry. In this case, the existing LRR becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to applications. In this paper, we generalize the LRR over the Euclidean space to the LRR model over a specific Rimannian manifold—the manifold of symmetric positive matrices (SPD). Experiments on several computer vision datasets showcase its noise robustness and superior performance on classification and segmentation compared with state-of-the-art approaches.