82 resultados para Reduced curves
Resumo:
The effect of High Hydrostatic Pressure (HHP) on the survival of Cronobacter sakazakii was investigated. Deviations from linearity were found on the survival curves and the Mafart equation accurately described the kinetics of inactivation. Comparisons between strains and treatments were made based on the time needed for a 5-log10 reduction in viable count. The ability of C. sakazakii to tolerate high pressure was straindependent with a 26-fold difference in resistance among four strains tested. Pressure resistance was greatest in the stationary growth phase and at the highest growth temperatures tested (30 and 37 °C). Cells treated in neutral pH buffer were 5-fold more resistant than those treated at pH 4.0, and 8-fold more sensitive than those treated in buffer with sucrose added (aw=0.98). Pressure resistance data obtained in buffer at the appropriate pH adequately estimated the resistance of C. sakazakii in chicken and vegetables soups. In contrast, a significant protective effect against high pressure was conferred by rehydrated powdered milk. As expected, treatment efficacy improved as pressure increased. z values of 112, 136 and 156 MPa were obtained for pH 4.0, pH 7.0 and aw=0.98 buffers, respectively. Cells with sublethal injury to their outer and cytoplasmic membranes were detected after HHP under all the conditions tested. The lower resistance of C. sakazakii cells when treated in media of pH 4.0 seemed to be due to a decreased barostability of the bacterial envelopes. Conversely, the higher resistance displayed in media of reduced water activity may relate to a higher stability of bacterial envelopes.
Resumo:
The Routh-stability method is employed to reduce the order of discrete-time system transfer functions. It is shown that the Routh approximant is well suited to reduce both the denominator and the numerator polynomials, although alternative methods, such as PadÃ�Â(c)-Markov approximation, are also used to fit the model numerator coefficients.
Resumo:
An error polynomial is defined, the coefficients of which indicate the difference at any instant between a system and a model of lower order approximating the system. It is shown how Markov parameters and time series proportionals of the model can be matched with those of the system by setting error polynomial coefficients to zero. Also discussed is the way in which the error between system and model can be considered as being a filtered form of an error input function specified by means of model parameter selection.
Resumo:
An external input signal is incorporated into a self-tuning controller which, although it is based on a CARMA system model, employs a state-space framework for control law calculations. Steady-state set point following can then be accomplished even when only a recursive least squares parameter estimation scheme is used, despite the fact that the disturbance affecting the system may well be coloured.
Resumo:
An in vitro study was conducted to investigate the effect of tannins on the extent and rate of gas and methane production, using an automated pressure evaluation system (APES). In this study three condensed tannins (CT; quebracho, grape seed and green tea tannins) and four hydrolysable tannins (HT; tara, valonea, myrabolan and chestnut tannins) were evaluated, with lucerne as a control substrate. CT and HT were characterised by matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF-MS). Tannins were added to the substrate at an effective concentration of 100 g/kg either with or without polyethylene glycol (PEG6000), and incubated for 72 h in pooled, buffered rumen liquid from four lactating dairy cows. After inoculation, fermentation bottles were immediately connected to the APES to measure total cumulative gas production (GP). During the incubation, 11 gas samples were collected from each bottle at 0, 1, 4, 7, 11, 15, 23, 30, 46, 52 and 72 h of incubation and analysed for methane. A modified Michaelis-Menten model was fitted to the methane concentration patterns and model estimates were used to calculate the total cumulative methane production (GPCH4). GP and GPCH4 curves were fitted using a modified monophasic Michaelis-Menten model. Addition of quebracho reduced GP (P=0.002), whilst the other tannins did not affect GP. Addition of PEG increased GP for quebracho (P=0.003), valonea (P=0.058) and grape seed tannins (P=0.071), suggesting that these tannins either inhibited or tended to inhibit fermentation. Addition of quebracho and grape seed tannins also reduced (P≤0.012) the maximum rate of gas production, indicating that microbial activity was affected. Quebracho, valonea, myrabolan and grape seed decreased (P≤0.003) GPCH4 and the maximum rate (0.001≤ P≤ 0.102) of CH4 production. Addition of chestnut, green tea and tara tannins did not affect total gas nor methane production. Valonea and myrabolan tannins have most promise for reducing methane production as they had only a minor impact on gas production.
Resumo:
UV–Vis absorption spectra of one-electron reduction products and 3MLCT excited states of [ReICl(CO)3- (N,N)] (N,N = 2,20-bipyridine, bpy; 1,10-phenanthroline, phen) have been measured by low-temperature spectroelectrochemistry and UV–Vis transient absorption spectroscopy, respectively, and assigned by open-shell TD-DFT calculations. The characters of the electronic transitions are visualized and analyzed using electron density redistribution maps. It follows that reduced and excited states can be approximately formulated as [ReICl(CO)3(N,Nÿ)]ÿ and ⁄[ReIICl(CO)3(N,Nÿ)], respectively. UV–Vis spectra of the reduced complexes are dominated by IL transitions, plus weaker MLCT contributions. Excited-state spectra show an intense band in the UV region of 50% IL origin mixed with LMCT (bpy, 373 nm) or MLCT (phen, 307 nm) excitations. Because of the significant IL contribution, this spectral feature is akin to the principal IL band of the anions. In contrast, the excited-state visible spectral pattern arises from predominantly LMCT transitions, any resemblance with the reduced-state visible spectra being coincidental. The Re complexes studied herein are representatives of a broad class of metal a-diimines, for which similar spectroscopic behavior can be expected.
Resumo:
The peak congestion of the European grid may create significant impacts on system costs because of the need for higher marginal cost generation, higher cost system balancing and increasing grid reinforcement investment. The use of time of use rates, incentives, real time pricing and other programmes, usually defined as Demand Side Management (DSM), could bring about significant reductions in prices, limit carbon emissions from dirty power plants, and improve the integration of renewable sources of energy. Unlike previous studies on elasticity of residential electricity demand under flat tariffs, the aim of this study is not to investigate the known relatively inelastic relationship between demand and prices. Rather, the aim is to assess how occupancy levels vary in different European countries. This reflects the reality of demand loads, which are predominantly determined by the timing of human activities (e.g. travelling to work, taking children to school) rather than prices. To this end, two types of occupancy elasticity are estimated: baseline occupancy elasticity and peak occupancy elasticity. These represent the intrinsic elasticity associated with human activities of single residential end-users in 15 European countries. This study makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; draw time use demand curves for video and TV watching activity; and estimate national occupancy elasticity levels of single-occupant households. Findings on occupancy elasticities provide an indication of possible DSM strategies based on occupancy levels and not prices.
Resumo:
The coarse spacing of automatic rain gauges complicates near-real- time spatial analyses of precipitation. We test the possibility of improving such analyses by considering, in addition to the in situ measurements, the spatial covariance structure inferred from past observations with a denser network. To this end, a statistical reconstruction technique, reduced space optimal interpolation (RSOI), is applied over Switzerland, a region of complex topography. RSOI consists of two main parts. First, principal component analysis (PCA) is applied to obtain a reduced space representation of gridded high- resolution precipitation fields available for a multiyear calibration period in the past. Second, sparse real-time rain gauge observations are used to estimate the principal component scores and to reconstruct the precipitation field. In this way, climatological information at higher resolution than the near-real-time measurements is incorporated into the spatial analysis. PCA is found to efficiently reduce the dimensionality of the calibration fields, and RSOI is successful despite the difficulties associated with the statistical distribution of daily precipitation (skewness, dry days). Examples and a systematic evaluation show substantial added value over a simple interpolation technique that uses near-real-time observations only. The benefit is particularly strong for larger- scale precipitation and prominent topographic effects. Small-scale precipitation features are reconstructed at a skill comparable to that of the simple technique. Stratifying the reconstruction method by the types of weather type classifications yields little added skill. Apart from application in near real time, RSOI may also be valuable for enhancing instrumental precipitation analyses for the historic past when direct observations were sparse.
Resumo:
Near isogenic lines varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) in cv. Mercia (2005/6 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cvs Maris Huntsman and Maris Widgeon (2007/8 to 2010/11; rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) were compared at one field site, but within different systems (‘organic’, O, 2005/6 to 2007/8 v ‘intensive’, I, 2005/6 to 2010/11). Further experiments at the site (2006/7 to 2008/9) compared 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. Gibberellin (GA) insensitive dwarfing alleles (Rht-B1b; Rht-B1c; Rht-D1b; Rht-D1c) could reduce α-amylase activity and/or increase Hagberg falling number (HFN) but effects depended greatly on system, background and season. Only Rht-B1c increased grain dormancy despite producing plants taller than Rht-D1c. The GA-sensitive Rht8c+Ppd-D1a in Mercia was associated with reduced HFN but analysis of the DH population suggested this was more closely linked with Ppd-D1a, rather than Rht8c. The severe GA-sensitive dwarfing allele Rht12 was associated with reduced HFN. Instability in HFN over season tended to increase with degree of dwarfing. There was a negative association between mean grain weight and HFN that was in addition to effects of Rht and Ppd-D1 allele.