80 resultados para Rainfall gauging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainfall can be modeled as a spatially correlated random field superimposed on a background mean value; therefore, geostatistical methods are appropriate for the analysis of rain gauge data. Nevertheless, there are certain typical features of these data that must be taken into account to produce useful results, including the generally non-Gaussian mixed distribution, the inhomogeneity and low density of observations, and the temporal and spatial variability of spatial correlation patterns. Many studies show that rigorous geostatistical analysis performs better than other available interpolation techniques for rain gauge data. Important elements are the use of climatological variograms and the appropriate treatment of rainy and nonrainy areas. Benefits of geostatistical analysis for rainfall include ease of estimating areal averages, estimation of uncertainties, and the possibility of using secondary information (e.g., topography). Geostatistical analysis also facilitates the generation of ensembles of rainfall fields that are consistent with a given set of observations, allowing for a more realistic exploration of errors and their propagation in downstream models, such as those used for agricultural or hydrological forecasting. This article provides a review of geostatistical methods used for kriging, exemplified where appropriate by daily rain gauge data from Ethiopia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-spectral rainfall estimation algorithm has been developed for the Sahel region of West Africa with the purpose of producing accumulated rainfall estimates for drought monitoring and food security. Radar data were used to calibrate multi-channel SEVIRI data from MSG, and a probability of rainfall at several different rain-rates was established for each combination of SEVIRI radiances. Radar calibrations from both Europe (the SatPrecip algorithm) and Niger (TAMORA algorithm) were used. 10 day estimates were accumulated from SatPrecip and TAMORA and compared with kriged gauge data and TAMSAT satellite rainfall estimates over West Africa. SatPrecip was found to produce large overestimates for the region, probably because of its non-local calibration. TAMORA was negatively biased for areas of West Africa with relatively high rainfall, but its skill was comparable to TAMSAT for the low-rainfall region climatologically similar to its calibration area around Niamey. These results confirm the high importance of local calibration for satellite-derived rainfall estimates. As TAMORA shows no improvement in skill over TAMSAT for dekadal estimates, the extra cloud-microphysical information provided by multi-spectral data may not be useful in determining rainfall accumulations at a ten day timescale. Work is ongoing to determine whether it shows improved accuracy at shorter timescales.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in climate variability and, in particular, changes in extreme climate events are likely to be of far more significance for environmentally vulnerable regions than changes in the mean state. It is generally accepted that sea-surface temperatures (SSTs) play an important role in modulating rainfall variability. Consequently, SSTs can be prescribed in global and regional climate modelling in order to study the physical mechanisms behind rainfall and its extremes. Using a satellite-based daily rainfall historical data set, this paper describes the main patterns of rainfall variability over southern Africa, identifies the dates when extreme rainfall occurs within these patterns, and shows the effect of resolution in trying to identify the location and intensity of SST anomalies associated with these extremes in the Atlantic and southwest Indian Ocean. Derived from a Principal Component Analysis (PCA), the results also suggest that, for the spatial pattern accounting for the highest amount of variability, extremes extracted at a higher spatial resolution do give a clearer indication regarding the location and intensity of anomalous SST regions. As the amount of variability explained by each spatial pattern defined by the PCA decreases, it would appear that extremes extracted at a lower resolution give a clearer indication of anomalous SST regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UKMeteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is underestimated (over-estimated) over wet (dry) regions of southern Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Niño-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investing in real estate markets overseas means venturing into the unknown, where you meet unfamiliar political and economic environments, unstable currencies, strange cultures and languages, and so although the advantages of international diversification might appear attractive, the risks of international investment must not be overlooked. However, capital markets are becoming global markets, and commercial real estate markets are no exception, accordingly despite the difficulties posed by venturing overseas no investor can overlook the potential international investment holds out. Thus, what strategies are appropriate for capitalising on this potential? Three issues must be considered: (1) the potential of the countries real estate market in general; (2) the potential of the individual market sectors; and (3) the investment process itself. Although each step in foreign real estate investment is critical, the initial assessment of opportunities is especially important. Various methods can be used to achieve this but a formal and systematic analysis of aggregate market potential should prove particularly fruitful. The work reported here, therefore, develops and illustrates such a methodology for the over 50 international real estate markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of much of Africa on rain fed agriculture leads to a high vulnerability to fluctuations in rainfall amount. Hence, accurate monitoring of near-real time rainfall is particularly useful, for example in forewarning possible crop shortfalls in drought-prone areas. Unfortunately, ground based observations are often inadequate. Rainfall estimates from satellite-based algorithms and numerical model outputs can fill this data gap, however rigorous assessment of such estimates is required. In this case, three satellite based products (NOAA-RFE 2.0, GPCP-1DD and TAMSAT) and two numerical model outputs (ERA-40 and ERA-Interim) have been evaluated for Uganda in East Africa using a network of 27 rain gauges. The study focuses on the years 2001 to 2005 and considers the main rainy season (February to June). All data sets were converted to the same temporal and spatial scales. Kriging was used for the spatial interpolation of the gauge data. All three satellite products showed similar characteristics and had a high level of skill that exceeded both model outputs. ERA-Interim had a tendency to overestimate whilst ERA-40 consistently underestimated the Ugandan rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland experiences considerable inter-annual and decadal rainfall variability, which impacts water-resource management, agriculture and infrastructure. To understand the mechanisms by which large-scale atmospheric and coupled air–sea processes drive these variations, empirical orthogonal teleconnection (EOT) analysis is applied to 1900–2010 seasonal Queensland rainfall. Fields from observations and the 20th Century Reanalysis are regressed onto the EOT timeseries to associate the EOTs with large-scale drivers. In winter, spring and summer the leading, state-wide EOTs are highly correlated with the El Nino–Southern Oscillation (ENSO); the Inter-decadal Pacific Oscillation modulates the summer ENSO teleconnection. In autumn, the leading EOT is associated with locally driven, late-season monsoon variations, while ENSO affects only tropical northern Queensland. Examining EOTs beyond the first, southeastern Queensland and the Cape York peninsula emerge as regions of coherent rainfall variability. In the southeast, rainfall anomalies respond to the strength and moisture content of onshore easterlies, controlled by Tasman Sea blocking. The summer EOT associated with onshore flow and blocking has been negative since 1970, consistent with the observed decline in rainfall along the heavily populated coast. The southeastern Queensland EOTs show considerable multi-decadal variability, which is independent of large-scale drivers. Summer rainfall in Cape York is associated with tropical-cyclone activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synoptic evolution of three tropical–extratropical (TE) interactions, each responsible for extreme rainfall events over southern Africa, is discussed in detail. Along with the consideration of previously studied events, common features of these heavy rainfall producing tropical temperate troughs (TTTs) over southern Africa are discussed. It is found that 2 days prior to an event, northeasterly moisture transports across Botswana, set up by the Angola low, are diverted farther south into the semiarid region of subtropical southern Africa. The TTTs reach full maturity as a TE cloud band, rooted in the central subcontinent, which is triggered by upper-level divergence along the leading edge of an upper-tropospheric westerly wave trough. Convection and rainfall within the cloud band is supported by poleward moisture transports with subtropical air rising as it leaves the continent and joins the midlatitude westerly flow. It is shown that these systems fit within a theoretical framework describing similar TE interactions found globally. Uplift forcing for the extreme rainfall of each event is investigated. Unsurprisingly, quasigeostrophic uplift is found to dominate in the midlatitudes with convective processes strongest in the subtropics. Rainfall in the semiarid interior of South Africa appears to be a result of quasigeostrophically triggered convection. Investigation of TTT formation in the context of planetary waves shows that early development is sometimes associated with previous anticyclonic wave breaking south of the subcontinent, with full maturity of TTTs occurring as a potential vorticity trough approaches the continent from the west. Sensitivity to upstream wave perturbations and effects on anticyclonic wave breaking in the South Indian Ocean are also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical-extratropical cloud band systems over southern Africa, known as tropical temperate troughs (TTTs), are known to contribute substantially to South African summer rainfall. This study performs a comprehensive assessment of the seasonal cycle and rainfall contribution of TTTs by using a novel object-based strategy that explicitly tracks these systems for their full life cycle. The methodology incorporates a simple assignment of station rainfall data to each event, thereby creating a database containing detailed rainfall characteristics for each TTT. This is used to explore the importance of TTTs for rain days and climatological rainfall totals in October–March. Average contributions range from 30 to 60 % with substantial spatial heterogeneity observed. TTT rainfall contributions over the Highveld and eastern escarpment are lower than expected. A short analysis of TTT rainfall variability indicates TTTs provide substantial, but not dominant, intraseasonal and interannual variability in station rainfall totals. TTTs are however responsible for a high proportion of heavy rainfall days. Of 52 extreme rainfall events in the 1979–1999 period, 30 are associated with these tropical-extratropical interactions. Cut-off lows were included in the evolution of 6 of these TTTs. The study concludes with an analysis of the question: does the Madden-Julian Oscillation influence the intensity of TTT rainfall over South Africa? Results suggest a weak but significant suppression (enhancement) of intensity during phase 1(6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summer rainfall over China has experienced substantial variability on longer time scales during the last century, and the question remains whether this is due to natural, internal variability or is part of the emerging signal of anthropogenic climate change. Using the best available observations over China, the decadal variability and recent trends in summer rainfall are investigated with the emphasis on changes in the seasonal evolution and on the temporal characteristics of daily rainfall. The possible relationships with global warming are reassessed. Substantial decadal variability in summer rainfall has been confirmed during the period 1958–2008; this is not unique to this period but is also seen in the earlier decades of the twentieth century. Two dominant patterns of decadal variability have been identified that contribute substantially to the recent trend of southern flooding and northern drought. Natural decadal variability appears to dominate in general but in the cases of rainfall intensity and the frequency of rainfall days, particularly light rain days, then the dominant EOFs have a rather different character, being of one sign over most of China, and having principal components (PCs) that appear more trendlike. The increasing intensity of rainfall throughout China and the decrease in light rainfall days, particularly in the north, could at least partially be of anthropogenic origin, both global and regional, linked to increased greenhouse gases and increased aerosols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius-Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that, while such effects are likely small compared to other sources of uncertainty, models with large Arabian Sea cold SST biases suppress the range of potential outcomes for changes to future early monsoon rainfall.