41 resultados para Pulmonary Vascular Function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With increasing recognition of the pivotal role of vascular dysfunction in the progression of atherosclerosis, the vasculature has emerged as an important target for dietary therapies. Recent studies have indicated that chronic fatty acid manipulation alters vascular reactivity, when measured after an overnight fast. However, individuals spend a large proportion of the day in the postprandial (non-fasted) state. Several studies have shown that high fat meals can impair endothelial function within 3-4 h, a time period often associated with peak postprandial lipaemia. Although the impact of meal fatty acids on the magnitude and duration of the postprandial lipaemic response has been extensively studied, very little is known about their impact on vascular reactivity after a meal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regular consumption of green tea polyphenols (GTP) is thought to reduce the risk of cardiovascular disease (CVD) but has also been associated with liver toxicity. The present trial aimed to assess the safety and potential CVD health beneficial effects of daily GTP consumption. We conducted a placebo-controlled parallel study to evaluate the chronic effects of GTP on liver function and CVD risk biomarkers in healthy men. Volunteers (treatment: n = 17, BMI 26.7 +/- 3.3 kg/m(2), age 41 +/- 9 y; placebo, n = 16, BMI 25.4 +/- 3.3 kg/m(2), age 40 +/- 10 y) consumed for 3 wk 6 capsules per day (2 before each principal meal) containing green tea extracts (equivalent to 714 mg/d GTP) or placebo. At the beginning and end of the intervention period, we collected blood samples from fasting subjects and measured vascular tone using Laser Doppler lontophoresis. Biomarkers of liver function and CVD risk (including blood pressure, plasma lipids, and asymmetric dimethylarginine) were unaffected by GTP consumption. After treatment, the ratio of total:HDL cholesterol was significantly reduced in participants taking GTP capsules compared with baseline. Endothelial-dependent and -independent vascular reactivity did not significantly differ between treatments. In conclusion, the present data suggests that the daily consumption of high doses of GTP by healthy men for 3 wk is safe but without effects on CVD risk biomarkers other than the total:HDL cholesterol ratio. J. Nutr. 139: 58-62, 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To study the bioavailability of anthocyanins and the effects of a 20% blackcurrant juice drink on vascular reactivity, plasma antioxidant status and other CVD risk markers. Subjects/Methods: The study was a randomised, cross over, double blind, placebo controlled acute meal study. Twenty healthy volunteers (11 females 9 males) were recruited, and all subjects completed the study. Fasted volunteers consumed a 20% blackcurrant juice drink (250 ml) or a control drink following a low-flavonoid diet for the previous 72 hours. Vascular reactivity was assessed at baseline and 120 mins after juice consumption by Laser Doppler Imaging (LDI). Plasma and urine samples were collected periodically over an 8 hour period for analysis, with a final urine sample collected at 24h. The cross over was performed after a 4-week washout. Results: There were no significant effects of the 20% blackcurrant juice drink on acute measures of vascular reactivity, biomarkers of endothelial function or lipid risk factors. Consumption of the test juice caused increases in plasma vitamin C (P=0.006), and urinary anthocyanins (P<0.001). Delphinidin-3-rutinoside and cyanidin-3-rutinoside were the main anthocyanins excreted in urine with delphinidin-3-glucoside also detected. The yield of anthocyanins in urine was 0.021 ± 0.003% of the dietary intake of delphinidin glycosides and 0.009 ± 0.002 % of the dietary intake of cyanidin glycosides. Conclusions: The juice consumption did not have a significant effect on vascular reactivity. Anthocyanins were present at low concentrations in the urine, and microbial metabolites of flavonoids were detected in plasma after juice consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central role of immune-receptorlike signaling mechanisms in the activation of platelets at sites of vascular injury is well established. Of equal importance to the regulatory systems that control the activation of platelets are those systems that negatively regulate platelets and thereby prevent inappropriate platelet activation and thrombosis. Recent reports have identified a new mechanism through which this may be achieved, which involves signaling via a receptor that contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). The role of ITIMs in the control of platelet function is the subject of this review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelets in the circulation are triggered by vascular damage to activate, aggregate and form a thrombus that prevents excessive blood loss. Platelet activation is stringently regulated by intracellular signalling cascades, which when activated inappropriately lead to myocardial infarction and stroke. Strategies to address platelet dysfunction have included proteomics approaches which have lead to the discovery of a number of novel regulatory proteins of potential therapeutic value. Global analysis of platelet proteomes may enhance the outcome of these studies by arranging this information in a contextual manner that recapitulates established signalling complexes and predicts novel regulatory processes. Platelet signalling networks have already begun to be exploited with interrogation of protein datasets using in silico methodologies that locate functionally feasible protein clusters for subsequent biochemical validation. Characterization of these biological systems through analysis of spatial and temporal organization of component proteins is developing alongside advances in the proteomics field. This focused review highlights advances in platelet proteomics data mining approaches that complement the emerging systems biology field. We have also highlighted nucleated cell types as key examples that can inform platelet research. Therapeutic translation of these modern approaches to understanding platelet regulatory mechanisms will enable the development of novel anti-thrombotic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cross-sectional analysis of ethnic differences in dietary intake, insulin sensitivity and beta-cell function, using the intravenous glucose tolerance test (IVGTT), was conducted on 497 healthy adult participants of the ‘Reading, Imperial, Surrey, Cambridge, and Kings’ (RISCK) study. Insulin sensitivity (Si) was significantly lower in African-Caribbean (AC) and South Asian (SA) participants [IVGTT-Si; AC: 2.13 vs SA: 2.25 vs white-European (WE): 2.84 (×10−4 mL µU min)2, p < 0.001]. AC participants had a higher prevalence of anti-hypertensive therapy (AC: 19.7% vs SA: 7.5%), the most cardioprotective lipid profile [total:high-density lipoprotein (HDL); AC: 3.52 vs SA: 4.08 vs WE: 3.83, p = 0.03] and more pronounced hyperinsulinaemia [IVGTT–acute insulin response (AIR)] [AC: 575 vs SA: 428 vs WE: 344 mL/µU/min)2, p = 0.002], specifically in female participants. Intake of saturated fat and carbohydrate was lower and higher in AC (10.9% and 50.4%) and SA (11.1% and 52.3%), respectively, compared to WE (13.6% and 43.8%, p < 0.001). Insulin resistance in ACs is characterised by ‘normal’ lipid profiles but high rates of hypertension and pronounced hyperinsulinaemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. APPROACH AND RESULTS: Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. CONCLUSIONS: This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. Methods and Results In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. Conclusions Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH.