118 resultados para Psicología animal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing data on animal health and welfare in organic livestock production systems in the European Community countries are reviewed in the light of the demands and challenges of the recently implemented EU regulation on organic livestock production. The main conclusions and recommendations of a three-year networking project on organic livestock production are summarised and the future challenges to organic livestock production in terms of welfare and health management are discussed. The authors conclude that, whilst the available data are limited and the implementation of the EC regulation is relatively recent, there is little evidence to suggest that organic livestock management causes major threats to animal health and welfare in comparison with conventional systems. There are, however, some well-identified areas, like parasite control and balanced ration formulation, where efforts are needed to find solutions that meet with organic standard requirements and guarantee high levels of health and welfare. It is suggested that, whilst organic standards offer an implicit framework for animal health and welfare management, there is a need to solve apparent conflicts between the organic farming objectives in regard to environment, public health, farmer income and animal health and welfare. The key challenges for the future of organic livestock production in Europe are related to the feasibility of implementing improved husbandry inputs and the development of evidence-based decision support systems for health and feeding management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, a number of mechanistic, dynamic simulation models of several components of the dairy production system have become available. However their use has been limited due to the detailed technical knowledge and special software required to run them, and the lack of compatibility between models in predicting various metabolic processes in the animal. The first objective of the current study was to integrate the dynamic models of [Brit. J. Nutr. 72 (1994) 679] on rumen function, [J. Anim. Sci. 79 (2001) 1584] on methane production, [J. Anim. Sci. 80 (2002) 2481 on N partition, and a new model of P partition. The second objective was to construct a decision support system to analyse nutrient partition between animal and environment. The integrated model combines key environmental pollutants such as N, P and methane within a nutrient-based feed evaluation system. The model was run under different scenarios and the sensitivity of various parameters analysed. A comparison of predictions from the integrated model with the original simulation models showed an improvement in N excretion since the integrated model uses the dynamic model of [Brit. J. Nutr. 72 (1994) 6791 to predict microbial N, which was not represented in detail in the original model. The integrated model can be used to investigate the degree to which production and environmental objectives are antagonistic, and it may help to explain and understand the complex mechanisms involved at the ruminal and metabolic levels. A part of the integrated model outputs were the forms of N and P in excreta and methane, which can be used as indices of environmental pollution. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest in animal welfare and welfare-friendly food products has been increasing in Europe over the last 10 years. The media, highlighting traditional farming methods and food scares such as those related to salmonella, bovine spongiform encephalopathy/variant Creutzfeldt-Jakob disease (BSE) and avian influenza, have brought the methods of animal farming to public attention. Concerns about farm animal welfare are reflected in the increase in the number of vegetarians and vegans and an increase in consumers wishing to purchase food which is more animal welfare-friendly. This paper considers consumers’ attitudes to animal welfare and to marketing practices, such as product labelling, welfare grading systems and food assurance marks using comparative data collected in a survey of around 1500 consumers in each of Great Britain, Italy and Sweden as part of the EU-funded Welfare Quality research project. The findings suggest a need for the provision of improved consumer information on the welfare provenance of food using appropriate product labelling and other methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the nutritional and veterinary effects of tannins on ruminants and makes some comparisons with non-ruminants. Tannin chemistry per se is not covered and readers are referred to several excellent reviews instead: (a) Okuda T et al. Heterocycles 30:1195-1218 (1990); (b) Ferreira D and Slade D. Nat Prod Rep 19:517-541 (2002); (c) Yoshida T et al. In Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, pp. 395-453 (2000); (d) Khanbabaee K and van Ree T. Nat Prod Rep 18:641-649 (2001); (e) Okuda et al. Phytochemistvy 55:513-529 (2000). The effects of tannins on rumen micro-organisms are also not reviewed, as these have been addressed by others: (a) McSweeney CS et al. Anim Feed Sci Technol 91:83-93 (2001); (b) Smith AH and Mackie RI. Appl Environ Microbiol 70:1104-1115 (2004). This paper deals first with the nutritional effects of tannins in animal feeds, their qualitative and quantitative diversity, and the implications of tannin-protein complexation. It then summarises the known physiological and harmful effects and discusses the equivocal evidence of the bioavailability of tannins. Issues concerning tannin metabolism and systemic effects are also considered. Opportunities are presented on how to treat feeds with high tannin contents, and some lesser-known but successful feeding strategies are highlighted. Recent research has explored the use of tannins for preventing animal deaths from bloat, for reducing intestinal parasites and for lowering gaseous ammonia and methane emissions. Finally, several tannin assays and a hypothesis are discussed that merit further investigation in order to assess their suitability for predicting animal responses. The aim is to provoke discussion and spur readers into new approaches. An attempt is made to synthesise the emerging information for relating tannin structures with their activities. Although many plants with high levels of tannins produce negative effects and require treatments, others are very useful animal feeds. Our ability to predict whether tannin-containing feeds confer positive or negative effects will depend on interdisciplinary research between animal nutritionists and plant chemists. The elucidation of tannin structure-activity relationships presents exciting opportunities for future feeding strategies that will benefit ruminants and the environment within the contexts of extensive, semi-intensive and some intensive agricultural systems. (c) 2006 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract 13.12.1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the nutritional and veterinary effects of tannins on ruminants and makes some comparisons with non-ruminants. Tannin chemistry per se is not covered and readers are referred to several excellent reviews instead: (a) Okuda T et al. Heterocycles 30:1195-1218 (1990); (b) Ferreira D and Slade D. Nat Prod Rep 19:517-541 (2002); (c) Yoshida T et al. In Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, pp. 395-453 (2000); (d) Khanbabaee K and van Ree T. Nat Prod Rep 18:641-649 (2001); (e) Okuda et al. Phytochemistvy 55:513-529 (2000). The effects of tannins on rumen micro-organisms are also not reviewed, as these have been addressed by others: (a) McSweeney CS et al. Anim Feed Sci Technol 91:83-93 (2001); (b) Smith AH and Mackie RI. Appl Environ Microbiol 70:1104-1115 (2004). This paper deals first with the nutritional effects of tannins in animal feeds, their qualitative and quantitative diversity, and the implications of tannin-protein complexation. It then summarises the known physiological and harmful effects and discusses the equivocal evidence of the bioavailability of tannins. Issues concerning tannin metabolism and systemic effects are also considered. Opportunities are presented on how to treat feeds with high tannin contents, and some lesser-known but successful feeding strategies are highlighted. Recent research has explored the use of tannins for preventing animal deaths from bloat, for reducing intestinal parasites and for lowering gaseous ammonia and methane emissions. Finally, several tannin assays and a hypothesis are discussed that merit further investigation in order to assess their suitability for predicting animal responses. The aim is to provoke discussion and spur readers into new approaches. An attempt is made to synthesise the emerging information for relating tannin structures with their activities. Although many plants with high levels of tannins produce negative effects and require treatments, others are very useful animal feeds. Our ability to predict whether tannin-containing feeds confer positive or negative effects will depend on interdisciplinary research between animal nutritionists and plant chemists. The elucidation of tannin structure-activity relationships presents exciting opportunities for future feeding strategies that will benefit ruminants and the environment within the contexts of extensive, semi-intensive and some intensive agricultural systems. (c) 2006 Society of Chemical Industry