113 resultados para Process Modelling, Process Management, Risk Modelling
Resumo:
High rates of nutrient loading from agricultural and urban development have resulted in surface water eutrophication and groundwater contamination in regions of Ontario. In Lake Simcoe (Ontario, Canada), anthropogenic nutrient contributions have contributed to increased algal growth, low hypolimnetic oxygen concentrations, and impaired fish reproduction. An ambitious programme has been initiated to reduce phosphorus loads to the lake, aiming to achieve at least a 40% reduction in phosphorus loads by 2045. Achievement of this target necessitates effective remediation strategies, which will rely upon an improved understanding of controls on nutrient export from tributaries of Lake Simcoe as well as improved understanding of the importance of phosphorus cycling within the lake. In this paper, we describe a new model structure for the integrated dynamic and process-based model INCA-P, which allows fully-distributed applications, suited to branched river networks. We demonstrate application of this model to the Black River, a tributary of Lake Simcoe, and use INCA-P to simulate the fluxes of P entering the lake system, apportion phosphorus among different sources in the catchment, and explore future scenarios of land-use change and nutrient management to identify high priority sites for implementation of watershed best management practises.
Resumo:
The evidence provided by modelled assessments of future climate impact on flooding is fundamental to water resources and flood risk decision making. Impact models usually rely on climate projections from global and regional climate models (GCM/RCMs). However, challenges in representing precipitation events at catchment-scale resolution mean that decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs. Here the impacts on projected high flows of differing ensemble approaches and application of Model Output Statistics to RCM precipitation are evaluated while assessing climate change impact on flood hazard in the Upper Severn catchment in the UK. Various ensemble projections are used together with the HBV hydrological model with direct forcing and also compared to a response surface technique. We consider an ensemble of single-model RCM projections from the current UK Climate Projections (UKCP09); multi-model ensemble RCM projections from the European Union's FP6 ‘ENSEMBLES’ project; and a joint probability distribution of precipitation and temperature from a GCM-based perturbed physics ensemble. The ensemble distribution of results show that flood hazard in the Upper Severn is likely to increase compared to present conditions, but the study highlights the differences between the results from different ensemble methods and the strong assumptions made in using Model Output Statistics to produce the estimates of future river discharge. The results underline the challenges in using the current generation of RCMs for local climate impact studies on flooding. Copyright © 2012 Royal Meteorological Society
Resumo:
Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change.
Resumo:
There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.
Resumo:
From a construction innovation systems perspective, firms acquire knowledge from suppliers, clients, universities and institutional environment. Building information modelling (BIM) involves these firms using new process standards. To understand the implications on interactive learning using BIM process standards, a case study is conducted with the UK operations of a multinational construction firm. Data is drawn from: a) two workshops involving the firm and a wider industry group, b) observations of practice in the BIM core team and in three ongoing projects, c) 12 semi-structured interviews; and d) secondary publications. The firm uses a set of BIM process standards (IFC, PAS 1192, Uniclass, COBie) in its construction activities. It is also involved in a pilot to implement the COBie standard, supported by technical and management standards for BIM, such as Uniclass and PAS1192. Analyses suggest that such BIM process standards unconsciously shapes the firm's internal and external interactive learning processes. Internally standards allow engineers to learn from each through visualising 3D information and talking around designs with operatives to address problems during construction. Externally, the firm participates in trial and pilot projects involving other construction firms, government agencies, universities and suppliers to learn about the standard and access knowledge to solve its specific design problems. Through its BIM manager, the firm provides feedback to standards developers and information technology suppliers. The research contributes by articulating how BIM process standards unconsciously change interactive learning processes in construction practice. Further research could investigate these findings in the wider UK construction innovation system.
Resumo:
Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, either using well-founded empirical relationships or process-based models with good predictive skill. A large variety of models exist today and it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project - FireMIP, an international project to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we summarise the current state-of-the-art in fire regime modelling and model evaluation, and outline what essons may be learned from FireMIP.
Resumo:
Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries.
Resumo:
The performance of a 2D numerical model of flood hydraulics is tested for a major event in Carlisle, UK, in 2005. This event is associated with a unique data set, with GPS surveyed wrack lines and flood extent surveyed 3 weeks after the flood. The Simple Finite Volume (SFV) model is used to solve the 2D Saint-Venant equations over an unstructured mesh of 30000 elements representing channel and floodplain, and allowing detailed hydraulics of flow around bridge piers and other influential features to be represented. The SFV model is also used to corroborate flows recorded for the event at two gauging stations. Calibration of Manning's n is performed with a two stage strategy, with channel values determined by calibration of the gauging station models, and floodplain values determined by optimising the fit between model results and observed water levels and flood extent for the 2005 event. RMS error for the calibrated model compared with surveyed water levels is ~±0.4m, the same order of magnitude as the estimated error in the survey data. The study demonstrates the ability of unstructured mesh hydraulic models to represent important hydraulic processes across a range of scales, with potential applications to flood risk management.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
Aquatic sediments often remove hydrophobic contaminants from fresh waters. The subsequent distribution and concentration of contaminants in bed sediments determines their effect on benthic organisms and the risk of re-entry into the water and/or leaching to groundwater. This study examines the transport of simazine and lindane in aquatic bed sediments with the aim of understanding the processes that determine their depth distribution. Experiments in flume channels (water flow of 10 cm s(-1)) determined the persistence of the compounds in the absence of sediment with (a) de-ionised water and (b) a solution that had been in contact with river sediment. In further experiments with river bed sediments in light and dark conditions, measurements were made of the concentration of the compounds in the overlying water and the development of bacterial/algal biofilms and bioturbation activity. At the end of the experiments, concentrations in sediments and associated pore waters were determined in sections of the sediment at 1 mm resolution down to 5 mm and then at 10 mm resolution to 50 mm depth and these distributions analysed using a sorption-diffusion-degradation model. The fine resolution in the depth profile permitted the detection of a maximum in the concentration of the compounds in the pore water near the surface, whereas concentrations in the sediment increased to a maximum at the surface itself. Experimental distribution coefficients determined from the pore water and sediment concentrations indicated a gradient with depth that was partly explained by an increase in organic matter content and specific surface area of the solids near the interface. The modelling showed that degradation of lindane within the sediment was necessary to explain the concentration profiles, with the optimum agreement between the measured and theoretical profiles obtained with differential degradation in the oxic and anoxic zones. The compounds penetrated to a depth of 40-50 rum over a period of 42 days. (C) 2004 Society of Chemical Industry.
Resumo:
This review introduces the methods used to simulate the processes affecting dissolved oxygen (DO) in lowland rivers. The important processes are described and this provides a modelling framework to describe those processes in the context of a mass-balance model. The process equations that are introduced all require (reaction) rate parameters and a variety of common procedures for identifying those parameters are reviewed. This is important because there is a wide range of estimation techniques for many of the parameters. These different techniques elicit different estimates of the parameter value and so there is the potential for a significant uncertainty in the model's inputs and therefore in the output too. Finally, the data requirements for modelling DO in lowland rivers are summarised on the basis of modelling the processes described in this review using a mass-balance model. This is reviewed with regard to what data are available and from where they might be obtained. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Increased atmospheric deposition of inorganic nitrogen (N) may lead to increased leaching of nitrate (NO3-) to surface waters. The mechanisms responsible for, and controls on, this leaching are matters of debate. An experimental N addition has been conducted at Gardsjon, Sweden to determine the magnitude and identify the mechanisms of N leaching from forested catchments within the EU funded project NITREX. The ability of INCA-N, a simple process-based model of catchment N dynamics, to simulate catchment-scale inorganic N dynamics in soil and stream water during the course of the experimental addition is evaluated. Simulations were performed for 1990-2002. Experimental N addition began in 1991. INCA-N was able to successfully reproduce stream and soil water dynamics before and during the experiment. While INCA-N did not correctly simulate the lag between the start of N addition and NO 2 3 breakthrough, the model was able to simulate the state change resulting from increased N deposition. Sensitivity analysis showed that model behaviour was controlled primarily by parameters related to hydrology and vegetation dynamics and secondarily by in-soil processes.
Resumo:
A new model, RothPC-1, is described for the turnover of organic C in the top metre of soil. RothPC-1 is a version of RothC-26.3, an earlier model for the turnover of C in topsoils. In RothPC-1 two extra parameters are used to model turnover in the top metre of soil: one, p, which moves organic C down the profile by an advective process, and the other, s, which slows decomposition with depth. RothPC-1 is parameterized and tested using measurements (described in Part 1, this issue) of total organic C and radiocarbon on soil profiles from the Rothamsted long-term field experiments, collected over a period of more than 100 years. RothPC-1 gives fits to measurements of organic C and radiocarbon in the 0-23, 23-46, 46-69 and 69-92 cm layers of soil that are almost all within (or close to) measurement error in two areas of regenerating woodland (Geescroft and Broadbalk Wildernesses) and an area of cultivated land from the Broadbalk Continuous Wheat Experiment. The fits to old grassland (the Park Grass Experiment) are less close. Two other sites that provide the requisite pre- and post-bomb data are also fitted; a prairie Chernozem from Russia and an annual grassland from California. Roth-PC-1 gives a close fit to measurements of organic C and radiocarbon down the Chernozem profile, provided that allowance is made for soil age; with the annual grassland the fit is acceptable in the upper part of the profile, but not in the clay-rich Bt horizon below. Calculations suggest that treating the top metre of soil as a homogeneous unit will greatly overestimate the effects of global warming in accelerating the decomposition of soil C and hence on the enhanced release of CO2 from soil organic matter; more realistic estimates will be obtained from multi-layer models such as RothPC-1.
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.