63 resultados para Probabilities.
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
Statistical graphics are a fundamental, yet often overlooked, set of components in the repertoire of data analytic tools. Graphs are quick and efficient, yet simple instruments of preliminary exploration of a dataset to understand its structure and to provide insight into influential aspects of inference such as departures from assumptions and latent patterns. In this paper, we present and assess a graphical device for choosing a method for estimating population size in capture-recapture studies of closed populations. The basic concept is derived from a homogeneous Poisson distribution where the ratios of neighboring Poisson probabilities multiplied by the value of the larger neighbor count are constant. This property extends to the zero-truncated Poisson distribution which is of fundamental importance in capture–recapture studies. In practice however, this distributional property is often violated. The graphical device developed here, the ratio plot, can be used for assessing specific departures from a Poisson distribution. For example, simple contaminations of an otherwise homogeneous Poisson model can be easily detected and a robust estimator for the population size can be suggested. Several robust estimators are developed and a simulation study is provided to give some guidance on which should be used in practice. More systematic departures can also easily be detected using the ratio plot. In this paper, the focus is on Gamma mixtures of the Poisson distribution which leads to a linear pattern (called structured heterogeneity) in the ratio plot. More generally, the paper shows that the ratio plot is monotone for arbitrary mixtures of power series densities.
Resumo:
Preference reversals are frequently observed in the lab, but almost all designs use completely transparent prospects, which are rarely features of decision making elsewhere. This raises questions of external validity. We test the robustness of the phenomenon to gambles that incorporate realistic ambiguity in both payoffs and probabilities. In addition, we test a recent explanation of preference reversals by loss aversion, which would also restrict the incidence of reversals outside the lab. According to this account, reversals occur largely because the valuation task endows subject with a gamble, activating loss aversion. This contrasts with the choice task, where the reference point is pre-experiment wealth. We test this explanation by holding the reference point constant. Our evidence suggests that reversals are only slightly diminished with ambiguity. We find no evidence supporting their explanation by loss aversion.
Resumo:
This paper constructs a housing market model to analyse conditions for different generations of households in the UK. Previous policy work has suggested that baby-boomers have benefitted at the expense of younger generations. The model relies on a form of financial accelerator in which existing homeowners reinvest a proportion of the capital gains on moving home. The model is extended to look at homeownership probabilities. It also explains why an increasing share of mortgages has gone to existing owners, despite market liberalisation and securitisation. In addition, the model contributes to the explanation of volatility.
Resumo:
An ensemble forecast is a collection of runs of a numerical dynamical model, initialized with perturbed initial conditions. In modern weather prediction for example, ensembles are used to retrieve probabilistic information about future weather conditions. In this contribution, we are concerned with ensemble forecasts of a scalar quantity (say, the temperature at a specific location). We consider the event that the verification is smaller than the smallest, or larger than the largest ensemble member. We call these events outliers. If a K-member ensemble accurately reflected the variability of the verification, outliers should occur with a base rate of 2/(K + 1). In operational forecast ensembles though, this frequency is often found to be higher. We study the predictability of outliers and find that, exploiting information available from the ensemble, forecast probabilities for outlier events can be calculated which are more skilful than the unconditional base rate. We prove this analytically for statistically consistent forecast ensembles. Further, the analytical results are compared to the predictability of outliers in an operational forecast ensemble by means of model output statistics. We find the analytical and empirical results to agree both qualitatively and quantitatively.
Resumo:
Glacier fluctuations exclusively due to internal variations in the climate system are simulated using downscaled integrations of the ECHAM4/OPYC coupled general circulation model (GCM). A process-based modeling approach using a mass balance model of intermediate complexity and a dynamic ice flow model considering simple shearing flow and sliding are applied. Multimillennia records of glacier length fluctuations for Nigardsbreen (Norway) and Rhonegletscher (Switzerland) are simulated using autoregressive processes determined by statistically downscaled GCM experiments. Return periods and probabilities of specific glacier length changes using GCM integrations excluding external forcings such as solar irradiation changes, volcanic, or anthropogenic effects are analyzed and compared to historical glacier length records. Preindustrial fluctuations of the glaciers as far as observed or reconstructed, including their advance during the “Little Ice Age,” can be explained by internal variability in the climate system as represented by a GCM. However, fluctuations comparable to the present-day glacier retreat exceed any variation simulated by the GCM control experiments and must be caused by external forcing, with anthropogenic forcing being a likely candidate.
Resumo:
A necessary condition for a good probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal observed probabilities verified over a large number of cases. As climate change trends are now emerging from the natural variability, we can apply this concept to climate predictions and compute the reliability of simulated local and regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble of climate model simulations prepared for the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5). With only a single verification time, the verification is over the spatial dimension. The local temperature trends appear to be reliable. However, when the global mean climate response is factored out, the ensemble is overconfident: the observed trend is outside the range of modelled trends in many more regions than would be expected by the model estimate of natural variability and model spread. Precipitation trends are overconfident for all trend definitions. This implies that for near-term local climate forecasts the CMIP5 ensemble cannot simply be used as a reliable probabilistic forecast.
Resumo:
In this paper, we develop a method, termed the Interaction Distribution (ID) method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1), pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2), qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.
Resumo:
Wine production is largely governed by atmospheric conditions, such as air temperature and precipitation, together with soil management and viticultural/enological practices. Therefore, anthropogenic climate change is likely to have important impacts on the winemaking sector worldwide. An important winemaking region is the Portuguese Douro Valley, which is known by its world-famous Port Wine. The identification of robust relationships between atmospheric factors and wine parameters is of great relevance for the region. A multivariate linear regression analysis of a long wine production series (1932–2010) reveals that high rainfall and cool temperatures during budburst, shoot and inflorescence development (February-March) and warm temperatures during flowering and berry development (May) are generally favourable to high production. The probabilities of occurrence of three production categories (low, normal and high) are also modelled using multinomial logistic regression. Results show that both statistical models are valuable tools for predicting the production in a given year with a lead time of 3–4 months prior to harvest. These statistical models are applied to an ensemble of 16 regional climate model experiments following the SRES A1B scenario to estimate possible future changes. Wine production is projected to increase by about 10 % by the end of the 21st century, while the occurrence of high production years is expected to increase from 25 % to over 60 %. Nevertheless, further model development will be needed to include other aspects that may shape production in the future. In particular, the rising heat stress and/or changes in ripening conditions could limit the projected production increase in future decades.
Resumo:
A procedure is described in which patients are randomized between two experimental treatments and a control. At a series of interim analyses, each experimental treatment is compared with control. One of the experimental treatments might then be found sufficiently superior to the control for it to be declared the best treatment, and the trial stopped. Alternatively, experimental treatments might be eliminated from further consideration at any stage. It is shown how the procedure can be conducted while controlling overall error probabilities. Data concerning evaluation of different doses of riluzole in the treatment of motor neurone disease are used for illustration.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud-masks. Here, this is done over both land and ocean using night-time (infrared) imagery. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 87% and 48% for ocean and land, respectively using the Bayesian technique, compared to 74% and 39%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud masks. Here, the technique is shown to be suitable for daytime applications over land and sea, using visible and near-infrared imagery, in addition to thermal infrared. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 89% and 73% for ocean and land, respectively using the Bayesian technique, compared to 90% and 70%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the C≡N groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4-n(NC)n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn−N and Zn−C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ~0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn−C≡N−Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contribution at temperatures up to 295 K.
Resumo:
Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.
Resumo:
We propose first, a simple task for the eliciting attitudes toward risky choice, the SGG lottery-panel task, which consists in a series of lotteries constructed to compensate riskier options with higher risk-return trade-offs. Using Principal Component Analysis technique, we show that the SGG lottery-panel task is capable of capturing two dimensions of individual risky decision making i.e. subjects’ average risk taking and their sensitivity towards variations in risk-return. From the results of a large experimental dataset, we confirm that the task systematically captures a number of regularities such as: A tendency to risk averse behavior (only around 10% of choices are compatible with risk neutrality); An attraction to certain payoffs compared to low risk lotteries, compatible with over-(under-) weighting of small (large) probabilities predicted in PT and; Gender differences, i.e. males being consistently less risk averse than females but both genders being similarly responsive to the increases in risk-premium. Another interesting result is that in hypothetical choices most individuals increase their risk taking responding to the increase in return to risk, as predicted by PT, while across panels with real rewards we see even more changes, but opposite to the expected pattern of riskier choices for higher risk-returns. Therefore, we conclude from our data that an “economic anomaly” emerges in the real reward choices opposite to the hypothetical choices. These findings are in line with Camerer's (1995) view that although in many domains, paid subjects probably do exert extra mental effort which improves their performance, choice over money gambles is not likely to be a domain in which effort will improve adherence to rational axioms (p. 635). Finally, we demonstrate that both dimensions of risk attitudes, average risk taking and sensitivity towards variations in the return to risk, are desirable not only to describe behavior under risk but also to explain behavior in other contexts, as illustrated by an example. In the second study, we propose three additional treatments intended to elicit risk attitudes under high stakes and mixed outcome (gains and losses) lotteries. Using a dataset obtained from a hypothetical implementation of the tasks we show that the new treatments are able to capture both dimensions of risk attitudes. This new dataset allows us to describe several regularities, both at the aggregate and within-subjects level. We find that in every treatment over 70% of choices show some degree of risk aversion and only between 0.6% and 15.3% of individuals are consistently risk neutral within the same treatment. We also confirm the existence of gender differences in the degree of risk taking, that is, in all treatments females prefer safer lotteries compared to males. Regarding our second dimension of risk attitudes we observe, in all treatments, an increase in risk taking in response to risk premium increases. Treatment comparisons reveal other regularities, such as a lower degree of risk taking in large stake treatments compared to low stake treatments and a lower degree of risk taking when losses are incorporated into the large stake lotteries. Results that are compatible with previous findings in the literature, for stake size effects (e.g., Binswanger, 1980; Antoni Bosch-Domènech & Silvestre, 1999; Hogarth & Einhorn, 1990; Holt & Laury, 2002; Kachelmeier & Shehata, 1992; Kühberger et al., 1999; B. J. Weber & Chapman, 2005; Wik et al., 2007) and domain effect (e.g., Brooks and Zank, 2005, Schoemaker, 1990, Wik et al., 2007). Whereas for small stake treatments, we find that the effect of incorporating losses into the outcomes is not so clear. At the aggregate level an increase in risk taking is observed, but also more dispersion in the choices, whilst at the within-subjects level the effect weakens. Finally, regarding responses to risk premium, we find that compared to only gains treatments sensitivity is lower in the mixed lotteries treatments (SL and LL). In general sensitivity to risk-return is more affected by the domain than the stake size. After having described the properties of risk attitudes as captured by the SGG risk elicitation task and its three new versions, it is important to recall that the danger of using unidimensional descriptions of risk attitudes goes beyond the incompatibility with modern economic theories like PT, CPT etc., all of which call for tests with multiple degrees of freedom. Being faithful to this recommendation, the contribution of this essay is an empirically and endogenously determined bi-dimensional specification of risk attitudes, useful to describe behavior under uncertainty and to explain behavior in other contexts. Hopefully, this will contribute to create large datasets containing a multidimensional description of individual risk attitudes, while at the same time allowing for a robust context, compatible with present and even future more complex descriptions of human attitudes towards risk.