39 resultados para Poultry inspection
Resumo:
Reliable and sufficiently discriminative methods are needed for differentiating individual strains of Salmonella enterica serotype Enteritidis beyond the phenotypic level; however, a consensus has not been reached as to which molecular method is best suited for this purpose. In addition, data are lacking on the molecular fingerprinting of serotype Enteritidis from poultry environments in the United Kingdom. This study evaluated the combined use of classical methods (phage typing) with three well-established molecular methods (ribotyping, macrorestriction analysis of genomic DNA, and plasmid profiling) in the assessment of diversity within 104 isolates of serotype Enteritidis from eight unaffiliated poultry farms in England. The most sensitive technique for identifying polymorphism was PstI-SphII ribotyping, distinguishing a total of 22 patterns, 10 of which were found among phage type 4 isolates. Pulsed-field gel electrophoresis of XhaI-digested genomic DNA segregated the isolates into only six types with minor differences between them. In addition, 14 plasmid profiles were found among this population. When all of the typing methods were combined, 54 types of strains were differentiated, and most of the poultry farms presented a variety of strains, which suggests that serotype Enteritidis organisms representing different genomic groups are circulating in England. In conclusion, geographical and animal origins of Salmonella serotype Enteritidis isolates may have a considerable influence on selecting the best typing strategy for individual programs, and a single method cannot be relied on for discriminating between strains.
Resumo:
Aims: To test the efficacy of Lactobacillus johnsonii FI9785 in reducing the colonization and shedding of Salmonella enterica serotype Enteritidis, Escherichia coli O78:K80 and Clostridium perfringens in poultry. Methods and Results: Specific pathogen-free chicks (1 day old) were dosed with a single oral inoculum of 1 x 10(9) CFU. Lactobacillus johnsonii FI9785 and 24 h later were challenged in separate experiments with S. Enteritidis (S1400, nal(r)) and E. coli O78:K80 (EC34195, nal(r)). There were no significant effects against S. Enteritidis whereas colonization of the small intestine by E. coli O78:K80 was reduced significantly. Both S. Enteritidis and E. coli colonized the caeca and colon to levels equivalent to control birds and there was no reduction in shedding as assessed by a semi-quantitative cloacal swabbing technique. Specific pathogen-free chicks (20 day old) were dosed with a single oral inoculum of 1 x 10(9) CFU L. johnsonii FI9785 and 24 h later were challenged with C. perfringens. A single oral dose of L. johnsonii FI9785 was sufficient to suppress all aspects of colonization and persistence of C. perfringens. Conclusions: Lactobacillus johnsonii FI9785 may be given to poultry for use as a competitive exclusion agent to control C. perfringens. Significance and Impact of the Study: Lactobacillus johnsonii FI9785 may be a valuable tool to control the endemic disease of necrotic enteritis, thereby reducing economic losses associated with reduced use of antimicrobials in the poultry industry.
Resumo:
We hypothesized that higher doses of fluoroquinolones for a shorter duration could maintain efficacy (as measured by reduction in bacterial count) while reducing selection in chickens of bacteria with reduced susceptibility. Chicks were infected with Salmonella enterica serovar Typhimurium DT104 and treated 1 week later with enrofloxacin at the recommended dose for 5 days (water dose adjusted to give 10 mg/kg of body weight of birds or equivalence, i.e., water at 50 ppm) or at 2.5 or 5 times the recommended dose for 2 days or 1 day, respectively. The dose was delivered continuously (ppm) or pulsed in the water (mg/kg) or by gavage (mg/kg). In vitro in sera, increasing concentrations of 0.5 to 8 mu g/ml enrofloxacin correlated with increased activity. In vivo, the efficacy of the 1-day treatment was significantly less than that of the 2- and 5-day treatments. The 2-day treatments showed efficacy similar to that of the 5-day treatment in all but one repeat treatment group and significantly (P < 0.01) reduced the Salmonella counts. Dosing at 2.5x the recommended dose and pulsed dosing both increased the peak antibiotic concentrations in cecal contents, liver, lung, and sera as determined by high-pressure liquid chromatography. There was limited evidence that shorter treatment regimens (in particular the 1-day regimen) selected for fewer strains with reduced susceptibility. In conclusion, the 2-day treatment would overall require a shorter withholding time than the 5-day treatment and, in view of the increased peak antibiotic concentrations, may give rise to improved efficacy, in particular for treating respiratory and systemic infections. However, it would be necessary to validate the 2-day regimen in a field situation and in particular against respiratory and systemic infections to validate or refute this hypothesis.
Resumo:
This paper compares the development of the poultry industry in Italy with the UK. Earlier research has suggested that the UK poultry industry developed a symbiotic relationship with the emerging supermarket retailers. Italy had a retarded supermarket sector. Its distribution system favoured small-scale, independent butchers rather than chains of self-service supermarkets. Despite this the Italian poultry industry also modernised, adopting US technologies. The catalyst for this modernisation was technological innovation in refrigeration technologies that enabled Italian consumers and independent retailers to be persuaded of the merits of the new ‘technological’ chicken. While the Italian market has become dominated by AIA and Amadori in recent years, the key innovators were the entrepreneurs that created the company called Arena.
Resumo:
The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n = 27), Irish-Intensively reared (n = 19) and UK-Free range (n = 30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.
Resumo:
Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diar- rhoea, increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no de- finitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challenged with B. pilosicoli strain B2904 with three oral doses two days apart. All birds were colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to ap- proaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the ef- fectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.
Resumo:
Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diarrhoea,increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no definitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challengedwith B. pilosicoli strain B2904with three oral doses two days apart. All birdswere colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p = 0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p b 0.001) to approaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the effectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.