50 resultados para Pollution Haven
Resumo:
Splitting techniques are commonly used when large-scale models, which appear in different fields of science and engineering, are treated numerically. Four types of splitting procedures are defined and discussed. The problem of the choice of a splitting procedure is investigated. Several numerical tests, by which the influence of the splitting errors on the accuracy of the results is studied, are given. It is shown that the splitting errors decrease linearly when (1) the splitting procedure is of first order and (2) the splitting errors are dominant. Three examples for splitting procedures used in all large-scale air pollution models are presented. Numerical results obtained by a particular air pollution model, Unified Danish Eulerian Model (UNI-DEM), are given and analysed.
Resumo:
Changes in climate variability as well as changes in extreme weather and climate events in the 20th century, especially those that took place during the last two to three decades of the 20th century, have been discussed in many recent scientific publications. Attempts to project the results of such studies in the future have been made under different assumptions. In this paper, we have chosen one of the well-known scenarios predicting changes of the climate in the world during the last 30 years of the 21st century. This scenario is used, together with several general predictions related to the future climate, to produce three climatic scenarios. The derived climatic scenarios are used to calculate predictions for future pollution levels in Denmark and in Europe by applying the Unified Danish Eulerian Model (UNI-DEM), on a space domain containing the whole of Europe.
Resumo:
The Water Framework Directive has caused a paradigm shift towards the integrated management of recreational water quality through the development of drainage basin-wide programmes of measures. This has increased the need for a cost-effective diagnostic tool capable of accurately predicting riverine faecal indicator organism (FIO) concentrations. This paper outlines the application of models developed to fulfil this need, which represent the first transferrable generic FIO models to be developed for the UK to incorporate direct measures of key FIO sources (namely human and livestock population data) as predictor variables. We apply a recently developed transfer methodology, which enables the quantification of geometric mean presumptive faecal coliforms and presumptive intestinal enterococci concentrations for base- and high-flow during the summer bathing season in unmonitored UK watercourses, to predict FIO concentrations in the Humber river basin district. Because the FIO models incorporate explanatory variables which allow the effects of policy measures which influence livestock stocking rates to be assessed, we carry out empirical analysis of the differential effects of seven land use management and policy instruments (fiscal constraint, production constraint, cost intervention, area intervention, demand-side constraint, input constraint, and micro-level land use management) all of which can be used to reduce riverine FIO concentrations. This research provides insights into FIO source apportionment, explores a selection of pollution remediation strategies and the spatial differentiation of land use policies which could be implemented to deliver river quality improvements. All of the policy tools we model reduce FIO concentrations in rivers but our research suggests that the installation of streamside fencing in intensive milk producing areas may be the single most effective land management strategy to reduce riverine microbial pollution.
Resumo:
A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.
Resumo:
1. Wild bees are one of the most important groups of pollinators in the temperate zone. Therefore, population declines have potentially negative impacts for both crop and wildflower pollination. Although heavy metal pollution is recognized to be a problem affecting large parts of the European Union, we currently lack insights into the effects of heavy metals on wild bees. 2. We investigated whether heavy metal pollution is a potential threat to wild bee communities by comparing (i) species number, (ii) diversity and (iii) abundance as well as (iv) natural mortality of emerging bees along two independent gradients of heavy metal pollution, one at Olkusz (OLK), Poland and the other at Avonmouth (AVO), UK. We used standardized nesting traps to measure species richness and abundance of wild bees, and we recorded the heavy metal concentration in pollen collected by the red mason bee Osmia rufa as a measure of pollution. 3. The concentration of cadmium, lead and zinc in pollen collected by bees ranged from a background level in unpolluted sites [OLK: 1·3, 43·4, 99·8 (mg kg−1); AVO: 0·8, 42·0, 56·0 (mg kg−1), respectively] to a high level on sites in the vicinity of the OLK and AVO smelters [OLK: 6·7, 277·0, 440·1 (mg kg−1); AVO: 9·3, 356·2, 592·4 (mg kg−1), respectively]. 4. We found that with increasing heavy metal concentration, there was a steady decrease in the number, diversity and abundance of solitary, wild bees. In the most polluted sites, traps were empty or contained single occupants, whereas in unpolluted sites, the nesting traps collected from 4 to 5 species represented by up to ten individuals. Moreover, the proportion of dead individuals of the solitary bee Megachile ligniseca increased along the heavy metal pollution gradient at OLK from 0·2 in uncontaminated sites to 0·5 in sites with a high concentration of pollution. 5. Synthesis and applications. Our findings highlight the negative relationship between heavy metal pollution and populations of wild bees and suggest that increasing wild bee richness in highly contaminated areas will require special conservation strategies. These may include creating suitable nesting sites and sowing a mixture of flowering plants as well as installing artificial nests with wild bee cocoons in polluted areas. Applying protection plans to wild pollinating bee communities in heavy metal-contaminated areas will contribute to integrated land rehabilitation to minimize the impact of pollution on the environment.
Resumo:
More than 30 epiphytic lichens, collected in Agadir (Morroco) and along a 150-km transect from the Atlantic Ocean eastward, were analyzed for their metal content and lead isotopic composition. This dataset was used to evaluate atmospheric metal contamination and the impact of the city on the surrounding area. The concentrations of Cu, Pb, and Zn (average ± 1 SD) were 20.9 ± 15.2 μg g−1, 13.8 ± 9.0 μg g−1, and 56.6 ± 26.6 μg g−1, respectively, with the highest values observed in lichens collected within the urban area. The 206Pb/207Pb and 208Pb/207Pb ratios in the lichens varied from 1.146 to 1.186 and from 2.423 to 2.460, respectively. Alkyllead-gasoline sold in Morocco by the major petrol companies gave isotopic ratios of 206Pb/207Pb = 1.076–1.081 and 208Pb/207Pb = 2.348–2.360. These new, homogeneous values for gasoline-derived lead improve and update the scarce isotopic database of potential lead sources in Morocco, and may be of great value to future environmental surveys on the presence of lead in natural reservoirs, where it persists over time (e.g., soils and sediments). The interest of normalizing metal concentrations in lichens to concentrations of a lithogenic element is demonstrated by the consistency of the results thus obtained with lead isotopic ratios. Leaded gasoline contributed less than 50% of the total amount of lead accumulated in lichens, even in areas subject to high vehicular traffic. This strongly suggests that the recent banishment of leaded gasoline in Morocco will not trigger a drastic improvement in air quality, at least in Agadir.
Resumo:
This study compares two sets of measurements of the composition of bulk precipitation and throughfall at a site in southern England with a 20-year gap between them. During this time, SO2 emissions from the UK fell by 82%, NOx emissions by 35% and NH3 emissions by 7%. These reductions were partly reflected in bulk precipitation, with deposition reductions of 56% in SO4,38% in NO3, 32% in NH4, and 73% in H+. In throughfall under Scots pine, the effects were more dramatic, with an 89% reduction in SO4 deposition and a 98% reduction in H+ deposition. The mean pH under these trees increased from 2.85 to 4.30. Nitrate and ammonium deposition in throughfall increased slightly, however. In the earlier period, the Scots pines were unable to neutralise the high flux of acidity associated with sulphur deposition, even though this was not a highly polluted part of the UK, and deciduous trees (oak and birch) were only able to neutralise it in summer when the leaves were present. In the later period, the sulphur flux had reduced to the point where the acidity could be neutralised by all species — the neutralisation mechanism is thus likely to be largely leaching of base cations and buffering substances from the foliage. The high fluxes are partly due to the fact that these are 60–80 year old trees growing in an open forest structure. The increase in NO3 and NH4 in throughfall in spite of decreased deposition seems likely due to a decrease in foliar uptake, perhaps due to the increasing nitrogen saturation of the catchment soils. These changes may increase the rate of soil microbial activity as nitrogen increases and acidity declines, with consequent effects on water quality of the catchment drainage stream.
Resumo:
Diffuse pollution, and the contribution from agriculture in particular, has become increasingly important as pollution from point sources has been addressed by wastewater treatment. Land management approaches, such as construction of field wetlands, provide one group of mitigation options available to farmers. Although field wetlands are widely used for diffuse pollution control in temperate environments worldwide, there is a shortage of evidence for the effectiveness and viability of these mitigation options in the UK. The Mitigation Options for Phosphorus and Sediment Project aims to make recommendations regarding the design and effectiveness of field wetlands for diffuse pollution control in UK landscapes. Ten wetlands have been built on four farms in Cumbria and Leicestershire. This paper focuses on sediment retention within the wetlands, estimated from annual sediment surveys in the first two years, and discusses establishment costs. It is clear that the wetlands are effective in trapping a substantial amount of sediment. Estimates of annual sediment retention suggest higher trapping rates at sandy sites (0.5–6 t ha�1 yr�1), compared to silty sites (0.02–0.4 t ha�1 yr�1) and clay sites (0.01–0.07 t ha�1 yr�1). Establishment costs for the wetlands ranged from £280 to £3100 and depended more on site specific factors, such as fencing and gateways on livestock farms, rather than on wetland size or design. Wetlands with lower trapping rates would also have lower maintenance costs, as dredging would be required less frequently. The results indicate that field wetlands show promise for inclusion in agri-environment schemes, particularly if capital payments can be provided for establishment, to encourage uptake of these multi-functional features.
Resumo:
The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.
Resumo:
Understanding the surface O3 response over a “receptor” region to emission changes over a foreign “source” region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale “import sensitivity” as the ratio of the O3 response to the 20% reductions in foreign versus “domestic” (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7–0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8–1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O3 above 60 ppb to emission reductions in a foreign region (<10–20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O3 of about 0.1 ppb a−1, at the low end of the 0.1–0.5 ppb a−1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source region.