52 resultados para Physiological Energetics
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
We solve eight partial-differential, two-dimensional, nonlinear mean field equations, which describe the dynamics of large populations of cortical neurons. Linearized versions of these equations have been used to generate the strong resonances observed in the human EEG, in particular the α-rhythm (8–), with physiologically plausible parameters. We extend these results here by numerically solving the full equations on a cortex of realistic size, which receives appropriately “colored” noise as extra-cortical input. A brief summary of the numerical methods is provided. As an outlook to future applications, we explain how the effects of GABA-enhancing general anaesthetics can be simulated and present first results.
Resumo:
Abstract: During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Biochemical and physiological analyses were conducted on different cultivars ('Wellington', 'Sherpa' and 'Red Baron') grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 degrees C) and stored under different regimes (1, 3, 6 and 6 1 degrees C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 degrees C, producing a considerable saving in energy and costs.
Resumo:
Water-deficit is a severe abiotic stress and major constraint to wheat productivity with effect on plant growth and development. The objective of this study was to characterize drought tolerant and susceptible spring wheat cultivars on the basis of physiological and yield attributes. The experiment was comprised of two irrigation regimes i.e. irrigated and 65% drought stress and ten wheat cultivars viz. Anmol, Moomal, Sarsabz, Bhittai, Pavon, SKD-1, TD-1, Kiran, Marvi and Mehran. Results indicated significant effect of water stress on stomatal dimension, stomatal conductance, relative leaf water content and grain yield with no effect on stomatal density. The irrigation × cultivars interaction was non-significant for grain yield only. Cultivars like Anmol, Moomal, Bhittai, Sarsabz proved to be drought tolerant with smaller stomatal dimensions, less stomatal conductance and more relative water content under water stress and produced higher grain yield. While decrease in relative water contents and grain yield, and increase in stomatal attributes was observed in drought susceptible cultivars such as Marvi, TD-1 and SKD-1 hence proved to be drought susceptible.
Resumo:
A primitive equation model is used to study the sensitivity of baroclinic wave life cycles to the initial latitude-height distribution of humidity. Diabatic heating is parametrized only as a consequence of condensation in regions of large-scale ascent. Experiments are performed in which the initial relative humidity is a simple function of model level, and in some cases latitude bands are specified which are initially relatively dry. It is found that the presence of moisture can either increase or decrease the peak eddy kinetic energy of the developing wave, depending on the initial moisture distribution. A relative abundance of moisture at mid-latitudes tends to weaken the wave, while a relative abundance at low latitudes tends to strengthen it. This sensitivity exists because competing processes are at work. These processes are described in terms of energy box diagnostics. The most realistic case lies on the cusp of this sensitivity. Further physical parametrizations are then added, including surface fluxes and upright moist convection. These have the effect of increasing wave amplitude, but the sensitivity to initial conditions of relative humidity remains. Finally, 'control' and 'doubled CO2' life cycles are performed, with initial conditions taken from the time-mean zonal-mean output of equilibrium GCM experiments. The attenuation of the wave resulting from reduced baroclinicity is more pronounced than any effect due to changes in initial moisture.
Resumo:
The complex relationship between flavonoid-based nutrition and cardiovascular disease may be dissected by understanding the activities of these compounds in biological systems. The aim of the present study was to explore a hierarchy for the importance of dietary flavonoids on cardiovascular health by examining the structural basis for inhibitory effects of common, dietary flavonoids (quercetin, apigenin, and naringenin) and the plasma metabolite, tamarixetin. Understanding flavonoid effects on platelets in vivo can be informed by investigations of the ability of these compounds to attenuate the function of these cells. Inhibition of platelet function in whole blood and plasma was structure-dependent. The order of potency was apigenin > tamarixetin > quercetin = naringenin indicating that in vivo, important functional groups are potentially a methylated B ring, and a non-hydroxylated, planar C ring. Apigenin and the methylated metabolite of quercetin, tamarixetin significantly reduced thrombus volume at concentrations (5 μM) that suggested their reported physiological levels (0.1-1 μM) may exert low levels of inhibition. Flavonoid interactions with erythrocytes, leukocytes and human serum albumin in whole blood reduce their inhibitory activities against platelet function. The diminished inhibitory activity of flavonoids that we observed in whole blood and plasma indicated that these interactions do not overcome the attenuating effects of these compounds. Furthermore, inhibition of platelet aggregation by flavonoids was enhanced with increases in exposure time, indicating the potential for measurable inhibitory effects during resident plasma times. We conclude that flavonoid structures may be a major influence of their activities in vivo with methylated metabolites and those of flavones being more potent than those of flavonols and flavanones.
Resumo:
We study the behavior and emotional arousal of the participants in an experimental auction, leading to an asymmetric social dilemma involving an auctioneer and two bidders. An antisocial transfer (bribe) which is beneficial for the auctioneer (official) is paid, if promised, by the winner of the auction. Some pro-social behavior on both the auctioneers' and the bidders' sides is observed even in the absence of any punishment mechanism (Baseline, Treatment 0). However, pro-social behavior is adopted by the vast majority of subjects when the loser of the auction can inspect the transaction between the winner and the auctioneer (Inspection, Treatment 1). The inspection and punishment mechanism is such that, if a bribe is (not) revealed, both corrupt agents (the denouncing bidder) lose(s) this period's payoffs. This renders the inspection option unprofitable for the loser and is rarely used, especially towards the end of the session, when pro-social behavior becomes pervasive. Subjects' emotional arousal was obtained through skin conductance responses. Generally speaking, our findings suggest that stronger emotions are associated with decisions deviating from pure monetary reward maximization, rather than with (un)ethical behavior per se. In fact, using response times as a measure of the subject's reflection during the decision-making process, we can associate emotional arousal with the conflict between primary or instinctive and secondary or contemplative motivations and, more specifically, with deviations from the subject's pure monetary interest.
Resumo:
Research and commercial interest in the genus Bifidobacterium have increased in the last decade due to their potential health benefits in probiotic functional foods, especially in dairy products. However, cultivation of bifidobacteria in milk is a difficult task compared with that of conventional starters because milk is not a good medium for growth of these nutritionally fastidious microorganisms. Therefore, suitable strains of Bifidobacterium for dairy products should be selected based on their safety and technological and functional properties. There are a number of milk products containing bifidobacteria in the world market and the demand for new products is increasing with the awareness of the potential health benefits of the consumption of products blended with bifidobacteria. Some strains of Bifidobacterium, which produce exopolysaccharide, have been isolated and characterised. This review will discuss the general characteristics of bifidobacteria, exopolysaccharide production, the selection criteria of bacterial strains for milk products, current applications of bifidobacteria in milk products, and their nutritional and beneficial health properties.
Resumo:
It is often assumed on the basis of single-parcel energetics that compressible effects and conversions with internal energy are negligible whenever typical displacements of fluid parcels are small relative to the scale height of the fluid (defined as the ratio of the squared speed of sound over gravitational acceleration). This paper shows that the above approach is flawed, however, and that a correct assessment of compressible effects and internal energy conversions requires considering the energetics of at least two parcels, or more generally, of mass conserving parcel re-arrangements. As a consequence, it is shown that it is the adiabatic lapse rate and its derivative with respect to pressure, rather than the scale height, which controls the relative importance of compressible effects and internal energy conversions when considering the global energy budget of a stratied fluid. Only when mass conservation is properly accounted for is it possible to explain why available internal energy can account for up to 40 percent of the total available potential energy in the oceans. This is considerably larger than the prediction of single-parcel energetics, according to which this number should be no more than about 2 percent.
Resumo:
This paper seeks to elucidate the fundamental differences between the nonconservation of potential temperature and that of Conservative Temperature, in order to better understand the relative merits of each quantity for use as the heat variable in numerical ocean models. The main result is that potential temperature is found to behave similarly to entropy, in the sense that its nonconservation primarily reflects production/destruction by surface heat and freshwater fluxes; in contrast, the nonconservation of Conservative Temperature is found to reflect primarily the overall compressible work of expansion/contraction. This paper then shows how this can be exploited to constrain the nonconservation of potential temperature and entropy from observed surface heat fluxes, and the nonconservation of Conservative Temperature from published estimates of the mechanical energy budgets of ocean numerical models. Finally, the paper shows how to modify the evolution equation for potential temperature so that it is exactly equivalent to using an exactly conservative evolution equation for Conservative Temperature, as was recently recommended by IOC et al. (2010). This result should in principle allow ocean modellers to test the equivalence between the two formulations, and to indirectly investigate to what extent the budget of derived nonconservative quantities such as buoyancy and entropy can be expected to be accurately represented in ocean models.
Resumo:
Implementation intention (IMP) has recently been highlighted as an effective emotion regulatory strategy (Schweiger Gallo et al., 2009). Most studies examining the effectiveness of IMPs to regulate emotion have relied on self-report measures of emotional change. In two studies we employed electrodermal activity (EDA) and heart rate (HR) in addition to arousal ratings (AR) to assess the impact of an IMP on emotional responses. In Study 1, 60 participants viewed neutral and two types of negative pictures (weapon vs. non-weapon) under the IMP “If I see a weapon, then I will stay calm and relaxed!” or no self-regulatory instructions (Control). In Study 2, additionally to the Control and IMP conditions, participants completed the picture task either under goal intention (GI) to stay calm and relaxed or warning instructions highlighting that some pictures contain weapons. In both studies, participants showed lower EDA, reduced HR deceleration and lower AR to the weapon pictures compared to the non-weapon pictures. In Study 2, the IMP was associated with lower EDA compared to the GI condition for the weapon pictures, but not compared to the weapon pictures in the Warning condition. AR were lower for IMP compared to GI and Warning conditions for the weapon pictures.
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Resumo:
Animal studies find that prenatal stress is associated with increased physiological and emotional reactivity later in life, mediated via fetal programming of the HPA axis through decreased glucocorticoid receptor (GR) gene expression. Post-natal behaviours, notably licking and grooming in rats, cause decreased behavioural indices of fear and reduced HPA axis reactivity mediated via increased GR gene expression. Post-natal maternal behaviours may therefore be expected to modify prenatal effects, but this has not previously been examined in humans. We examined whether, according to self-report, maternal stroking over the first weeks of life modified associations between prenatal depression and physiological and behavioral outcomes in infancy, hence mimicking effects of rodent licking and grooming. From a general population sample of 1233 first time mothers recruited at 20 weeks gestation we drew a stratified random sample of 316 for assessment at 32 weeks based on reported inter-partner psychological abuse, a risk to child development. Of these 271 provided data at 5, 9 and 29 weeks post delivery. Mothers reported how often they stroked their babies at 5 and 9 weeks. At 29 weeks vagal withdrawal to a stressor, a measure of physiological adaptability, and maternal reported negative emotionality were assessed. There was a significant interaction between prenatal depression and maternal stroking in the prediction of vagal reactivity to a stressor (p = .01), and maternal reports of infant anger proneness (p = .007) and fear (p = .043). Increasing maternal depression was associated with decreasing physiological adaptability, and with increasing negative emotionality, only in the presence of low maternal stroking. These initial findings in humans indicate that maternal stroking in infancy, as reported by mothers, has effects strongly resembling the effects of observed maternal behaviours in animals, pointing to future studies of the epigenetic, physiological and behavioral effects of maternal stroking.