35 resultados para Phylogenetic analyses
Resumo:
The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon-known as heterotachy-can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.
Resumo:
We investigate the performance of phylogenetic mixture models in reducing a well-known and pervasive artifact of phylogenetic inference known as the node-density effect, comparing them to partitioned analyses of the same data. The node-density effect refers to the tendency for the amount of evolutionary change in longer branches of phylogenies to be underestimated compared to that in regions of the tree where there are more nodes and thus branches are typically shorter. Mixture models allow more than one model of sequence evolution to describe the sites in an alignment without prior knowledge of the evolutionary processes that characterize the data or how they correspond to different sites. If multiple evolutionary patterns are common in sequence evolution, mixture models may be capable of reducing node-density effects by characterizing the evolutionary processes more accurately. In gene-sequence alignments simulated to have heterogeneous patterns of evolution, we find that mixture models can reduce node-density effects to negligible levels or remove them altogether, performing as well as partitioned analyses based on the known simulated patterns. The mixture models achieve this without knowledge of the patterns that generated the data and even in some cases without specifying the full or true model of sequence evolution known to underlie the data. The latter result is especially important in real applications, as the true model of evolution is seldom known. We find the same patterns of results for two real data sets with evidence of complex patterns of sequence evolution: mixture models substantially reduced node-density effects and returned better likelihoods compared to partitioning models specifically fitted to these data. We suggest that the presence of more than one pattern of evolution in the data is a common source of error in phylogenetic inference and that mixture models can often detect these patterns even without prior knowledge of their presence in the data. Routine use of mixture models alongside other approaches to phylogenetic inference may often reveal hidden or unexpected patterns of sequence evolution and can improve phylogenetic inference.
Resumo:
The monophyly of the Peltophorum group, one of nine informal groups recognized by Polhill in the Caesalpinieae, was tested using sequence data from the trnL-F, rbcL, and rps16 regions of the chloroplast genome. Exemplars were included from all 16 genera of the Peltophorum group, and from 15 genera representing seven of the other eight informal groups in the tribe. The data were analyzed separately and in combined analyses using parsimony and Bayesian methods. The analysis method had little effect on the topology of well-supported relationships. The molecular data recovered a generally well-supported phylogeny with many intergeneric relationships resolved. Results show that the Peltophorum group as currently delimited is polyphyletic, but that eight genera plus one undescribed genus form a core Peltophorum group, which is referred to here as the Peltophorum group sensu stricto. These genera are Bussea, Conzattia, Colvillea, Delonix, Heteroflorum (inedit.), Lemuropisum, Parkinsonia, Peltophorum, and Schizolobium. The remaining eight genera of the Peltophorum group s.l. are distributed across the Caesalpinieae. Morphological support for the redelimited Peltophorum group and the other recovered clades was assessed, and no unique synapomorphy was found for the Peltophorum group s.s. A proposal for the reclassification of the Peltophorum group s.l. is presented.
Resumo:
The Bryaceae are a large cosmopolitan family of mosses containing genera of considerable taxonomic difficulty. Phylogenetic relationships within the family were inferred using data from chloroplast DNA sequences (rps4 and trnL-trnF region). Parsimony and maximum likelihood optimality criteria, and Bayesian phylogenetic inference procedures were employed to reconstruct relationships. The genera Bryum and Brachymenium are not monophyletic groups. A clade comprising Plagiobryum, Acidodontium, Mielichhoferia macrocarpa, Bryum sects. Bryum, Apalodictyon, Limbata, Leucodontium, Caespiticia, Capillaria (in part: sect. Capillaria), and Brachymenium sect. Dicranobryum, is well supported in all analyses and represents a major lineage within the family. Section Dicranobryum of Brachymenium is more closely related to section Bryum than to the other sections of Brachymenium, as are Mielichhoferia macrocarpa and M. himalayana. Species of Acidodontium form a clade with Anomobryum julaceum. The grouping of species with a rosulate gametophytic growth form suggests the presence of a 'rosulate' clade similar in circumscription to the genus Rosulabryum. Mielichhoferia macrocarpa and M. himalayana are transferred to Bryum as B. porsildii and B. caucasicum, respectively.
Resumo:
The phylogenetics of Sternbergia (Amaryllidaceae) were studied using DNA sequences of the plastid ndhF and matK genes and nuclear internal transcribed spacer (ITS) ribosomal region for 38, 37 and 32 ingroup and outgroup accessions, respectively. All members of Sternbergia were represented by at least one accession, except S. minoica and S. schubertii, with additional taxa from Narcissus and Pancratium serving as principal outgroups. Sternbergia was resolved and supported as sister to Narcissus and composed of two primary subclades: S. colchiciflora sister to S. vernalis, S. candida and S. clusiana, with this clade in turn sister to S. lutea and its allies in both Bayesian and bootstrap analyses. A clear relationship between the two vernal flowering members of the genus was recovered, supporting the hypothesis of a single origin of vernal flowering in Sternbergia. However, in the S. lutea complex, the DNA markers examined did not offer sufficient resolving power to separate taxa, providing some support for the idea that S. sicula and S. greuteriana are conspecific with S. lutea