57 resultados para Peroxy niobate, controllable synthesis, optical properties
Resumo:
We present a novel method for retrieving high-resolution, three-dimensional (3-D) nonprecipitating cloud fields in both overcast and broken-cloud situations. The method uses scanning cloud radar and multiwavelength zenith radiances to obtain gridded 3-D liquid water content (LWC) and effective radius (re) and 2-D column mean droplet number concentration (Nd). By using an adaption of the ensemble Kalman filter, radiances are used to constrain the optical properties of the clouds using a forward model that employs full 3-D radiative transfer while also providing full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from a challenging cumulus cloud field produced by a large-eddy simulation snapshot. Uncertainty due to measurement error in overhead clouds is estimated at 20% in LWC and 6% in re, but the true error can be greater due to uncertainties in the assumed droplet size distribution and radiative transfer. Over the entire domain, LWC and re are retrieved with average error 0.05–0.08 g m-3 and ~2 μm, respectively, depending on the number of radiance channels used. The method is then evaluated using real data from the Atmospheric Radiation Measurement program Mobile Facility at the Azores. Two case studies are considered, one stratocumulus and one cumulus. Where available, the liquid water path retrieved directly above the observation site was found to be in good agreement with independent values obtained from microwave radiometer measurements, with an error of 20 g m-2.
Resumo:
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
Resumo:
Tetrahedral chalcogenide clusters, with their well-defined molecular structures and interesting properties, are attractive building blocks for hybrid materials, in which porosity may be integrated with electronic or optical properties. Linkage of tetrahedral clusters often occurs through bridging chalcogenolate ligands, and results in extended structures of inorganic connectivity. However, linkage of tetrahedral clusters via organic ligands is also possible and a number of coordination polymers have already been reported. Recent advances on the synthesis and crystal structures of extended hybrid structures based on tetrahedral clusters are described here.
Resumo:
This paper reports the first derived thermo-optical properties for vacuum deposited infrared thin films embedded in multilayers. These properties were extracted from the temperature-dependence of manufactured narrow bandpass filters across the 4-17 µm mid-infrared wavelength region. Using a repository of spaceflight multi-cavity bandpass filters, the thermo-optical expansion coefficients of PbTe and ZnSe were determined across an elevated temperature range 20-160 ºC. Embedded ZnSe films showed thermo-optical properties similar to reported bulk values, whilst the embedded PbTe films of lower optical density, deviate from reference literature sources. Detailed knowledge of derived coefficients is essential to the multilayer design of temperature-invariant narrow bandpass filters for use in non-cooled infrared detection systems. We further present manufacture of the first reported temperature-invariant multi-cavity narrow bandpass filter utilizing PbS chalcogenide layer material.
Resumo:
A single habit parameterization for the shortwave optical properties of cirrus is presented. The parameterization utilizes a hollow particle geometry, with stepped internal cavities as identified in laboratory and field studies. This particular habit was chosen as both experimental and theoretical results show that the particle exhibits lower asymmetry parameters when compared to solid crystals of the same aspect ratio. The aspect ratio of the particle was varied as a function of maximum dimension, D, in order to adhere to the same physical relationships assumed in the microphysical scheme in a configuration of the Met Office atmosphere-only global model, concerning particle mass, size and effective density. Single scattering properties were then computed using T-Matrix, Ray Tracing with Diffraction on Facets (RTDF) and Ray Tracing (RT) for small, medium, and large size parameters respectively. The scattering properties were integrated over 28 particle size distributions as used in the microphysical scheme. The fits were then parameterized as simple functions of Ice Water Content (IWC) for 6 shortwave bands. The parameterization was implemented into the GA6 configuration of the Met Office Unified Model along with the current operational long-wave parameterization. The GA6 configuration is used to simulate the annual twenty-year short-wave (SW) fluxes at top-of-atmosphere (TOA) and also the temperature and humidity structure of the atmosphere. The parameterization presented here is compared against the current operational model and a more recent habit mixture model.
Resumo:
Hydrogels are defined as three-dimensionally cross-linked networks of hydrophilic polymers capable of imbibing large amounts of water or biological fluids.They can be prepared from any water-soluble polymer or monomer, encompassing a wide range of chemical compositions and bulk physical properties. In the swollen state hydrogels are soft, wet and elastic materials that resemble natural living tissue, which makes them candidates for developing various biomaterials and dosage forms. This article provides a brief introduction to hydrogels, methods of their synthesis and properties
Resumo:
The Aerosol Direct Radiative Experiment (ADRIEX) took place over the Adriatic and Black Seas during August and September 2004 with the aim of characterizing anthropogenic aerosol in these regions in terms of its physical and optical properties and establishing its impact on radiative balance. Eight successful flights of the UK BAE-146 Facility for Atmospheric Airborne Measurements were completed together with surface-based lidar and AERONET measurements, in conjunction with satellite overpasses. This paper outlines the motivation for the campaign, the methodology and instruments used, describes the synoptic situation and provides an overview of the key results. ADRIEX successfully measured a range of aerosol conditions across the northern Adriatic, Po Valley and Black Sea. Generally two layers of aerosol were found in the vertical: in the flights over the Black Sea and the Po Valley these showed differences in chemical and microphysical properties, whilst over the Adriatic the layers were often more similar. Nitrate aerosol was found to be important in the Po Valley region. The use of new instruments to measure the aerosol chemistry and mixing state and to use this information in determining optical properties is demonstrated. These results are described in much more detail in the subsequent papers of this special issue.
Resumo:
Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.
Resumo:
The VISIR instrument for the European Southern Observatory (ESO) Very Large Telescope (VLT) is a thermal-infrared imager and spectrometer currently being developed by the French Service d'Astrophysique of CEA Saclay, and Dutch NFRA ASTRON Dwingeloo consortium. This cryogenic instrument will employ precision infrared bandpass filters in the N-( =7.5-14µm) and Q-( =16-28µm) band mid-IR atmospheric windows to study interstellar and circumstellar environments crucial for star and planetary formation theories. As the filters in these mid-IR wavelength ranges are of interest to many astronomical cryogenic instruments, a worldwide astronomical filter consortium was set up with participation from 12 differing institutes, each requiring instrument specific filter operating environments and optical metrology. This paper describes the design and fabrication methods used to manufacture these astronomical consortium filters, including the rationale for the selection of multilayer coating designs, temperature-dependant optical properties of the filter materials and FTIR spectral measurements showing the changes in passband and blocking performance on cooling to <50K. We also describe the development of a 7-14µm broadband antireflection coating deposited on Ge lenses and KRS-5 grisms for cryogenic operation at 40K
Resumo:
Infrared optical-multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. This paper summarizes the effects of that environment on the physical and optical properties of the filters and materials flown.
Resumo:
Infrared optical-multilayer filters and materials were exposed to the space environment of low Earth for a period of nearly six years on the NASA Long Duration Exposure Facility (LDEF) mission. This report describes the effects of that environment on the physical and optical properties of filters and materials used in an experiment designed by the University of reading Infrared multilayer Laboratory. Results of the experiment comprise IR processed spectra both before (1983), and after (1990) exposure, in conjunction with unexposed control samples.
Resumo:
Residual stress having been further reduced, selected infrared coatings composed of thin films of (PbTe/ ZnS (or ZnSe) can now be made which comply with the durability requirements of MIL-48616 whilst retaining transparency. Such improved durability is due to the sequence:- i) controlled deposition, followed by ii) immediate exposure to air, followed by iii) annealing in vacuo to relieve stress. (At the time of writing we assume the empiric procedure "exposure to air/annealing in vacuo" acts to relieve the inherent stresses of deposition). As part of their testing, representative sample filters prepared by the procedure are being assembled for the shuttle's 1st Long Duration Exposure Facility (to be placed in earth orbit for a considerable period and then recovered for analysis). The sample filters comprise various narrowband-designs to permit deduction of the constituent thin film optical properties. The Reading assembly also contains representative sample of the infrared crystals, glasses, thin-film absorbers and bulk absorbers, and samples of shorter-wavelength filters prepared similarly but made with Ge/SiO. Findings on durability and transparency after exposure will be reported.
Resumo:
The Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave radiation (GERBILS) was an observational field experiment over North Africa during June 2007. The campaign involved 10 flights by the FAAM BAe-146 research aircraft over southwestern parts of the Sahara Desert and coastal stretches of the Atlantic Ocean. Objectives of the GERBILS campaign included characterisation of mineral dust geographic distribution and physical and optical properties, assessment of the impact upon radiation, validation of satellite remote sensing retrievals, and validation of numerical weather prediction model forecasts of aerosol optical depths (AODs) and size distributions. We provide the motivation behind GERBILS and the experimental design and report the progress made in each of the objectives. We show that mineral dust in the region is relatively non-absorbing (mean single scattering albedo at 550 nm of 0.97) owing to the relatively small fraction of iron oxides present (1–3%), and that detailed spectral radiances are most accurately modelled using irregularly shaped particles. Satellite retrievals over bright desert surfaces are challenging owing to the lack of spectral contrast between the dust and the underlying surface. However, new techniques have been developed which are shown to be in relatively good agreement with AERONET estimates of AOD and with each other. This encouraging result enables relatively robust validation of numerical models which treat the production, transport, and deposition of mineral dust. The dust models themselves are able to represent large-scale synoptically driven dust events to a reasonable degree, but some deficiencies remain both in the Sahara and over the Sahelian region, where cold pool outflow from convective cells associated with the intertropical convergence zone can lead to significant dust production.
Resumo:
A solution of the lidar equation is discussed, that permits combining backscatter and depolarization measurements to quantitatively distinguish two different aerosol types with different depolarization properties. The method has been successfully applied to simultaneous observations of volcanic ash and boundary layer aerosol obtained in Exeter, United Kingdom, on 16 and 18 April 2010, permitting the contribution of the two aerosols to be quantified separately. First a subset of the atmospheric profiles is used where the two aerosol types belong to clearly distinguished layers, for the purpose of characterizing the ash in terms of lidar ratio and depolarization. These quantities are then used in a three‐component atmosphere solution scheme of the lidar equation applied to the full data set, in order to compute the optical properties of both aerosol types separately. On 16 April a thin ash layer, 100–400 m deep, is observed (average and maximum estimated ash optical depth: 0.11 and 0.2); it descends from ∼2800 to ∼1400 m altitude over a 6‐hour period. On 18 April a double ash layer, ∼400 m deep, is observed just above the morning boundary layer (average and maximum estimated ash optical depth: 0.19 and 0.27). In the afternoon the ash is entrained into the boundary layer, and the latter reaches a depth of ∼1800 m (average and maximum estimated ash optical depth: 0.1 and 0.15). An additional ash layer, with a very small optical depth, was observed on 18 April at an altitude of 3500–4000 m. By converting the lidar optical measurements using estimates of volcanic ash specific extinction, derived from other works, the observations seem to suggest approximate peak ash concentrations of ∼1500 and ∼1000 mg/m3,respectively, on the two observations dates.
Resumo:
The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2007 and 2011 and climate models did not predict this decline. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds form on Arctic sea ice during the melting season and their presence affects the heat and mass balances of the ice cover, mainly by decreasing the value of the surface albedo by up to 20%. We have developed a melt pond model suitable for forecasting the presence of melt ponds based on sea ice conditions. This model has been incorporated into the Los Alamos CICE sea ice model, the sea ice component of several IPCC climate models. Simulations for the period 1990 to 2007 are in good agreement with observed ice concentration. In comparison to simulations without ponds, the September ice volume is nearly 40% lower. Sensitivity studies within the range of uncertainty reveal that, of the parameters pertinent to the present melt pond parameterization and for our prescribed atmospheric and oceanic forcing, variations of optical properties and the amount of snowfall have the strongest impact on sea ice extent and volume. We conclude that melt ponds will play an increasingly important role in the melting of the Arctic ice cover and their incorporation in the sea ice component of Global Circulation Models is essential for accurate future sea ice forecasts.