66 resultados para Periodic press
Resumo:
An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
We study the numerical efficiency of solving the self-consistent field theory (SCFT) for periodic block-copolymer morphologies by combining the spectral method with Anderson mixing. Using AB diblock-copolymer melts as an example, we demonstrate that this approach can be orders of magnitude faster than competing methods, permitting precise calculations with relatively little computational cost. Moreover, our results raise significant doubts that the gyroid (G) phase extends to infinite $\chi N$. With the increased precision, we are also able to resolve subtle free-energy differences, allowing us to investigate the layer stacking in the perforated-lamellar (PL) phase and the lattice arrangement of the close-packed spherical (S$_{cp}$) phase. Furthermore, our study sheds light on the existence of the newly discovered Fddd (O$^{70}$) morphology, showing that conformational asymmetry has a significant effect on its stability.
Resumo:
We prove that all the eigenvalues of a certain highly non-self-adjoint Sturm–Liouville differential operator are real. The results presented are motivated by and extend those recently found by various authors (Benilov et al. (2003) [3], Davies (2007) [7] and Weir (2008) [18]) on the stability of a model describing small oscillations of a thin layer of fluid inside a rotating cylinder.
Resumo:
In a previous paper (J. of Differential Equations, Vol. 249 (2010), 3081-3098) we examined a family of periodic Sturm-Liouville problems with boundary and interior singularities which are highly non-self-adjoint but have only real eigenvalues. We now establish Schatten class properties of the associated resolvent operator.
Resumo:
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.
Resumo:
This paper represents the last technical contribution of Professor Patrick Parks before his untimely death in February 1995. The remaining authors of the paper, which was subsequently completed, wish to dedicate the article to Patrick. A frequency criterion for the stability of solutions of linear difference equations with periodic coefficients is established. The stability criterion is based on a consideration of the behaviour of a frequency hodograph with respect to the origin of coordinates in the complex plane. The formulation of this criterion does not depend on the order of the difference equation.
Resumo:
Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.
Resumo:
We study generalised prime systems (both discrete and continuous) for which the `integer counting function' N(x) has the property that N(x) ¡ cx is periodic for some c > 0. We show that this is extremely rare. In particular, we show that the only such system for which N is continuous is the trivial system with N(x) ¡ cx constant, while if N has finitely many discontinuities per bounded interval, then N must be the counting function of the g-prime system containing the usual primes except for finitely many. Keywords and phrases: Generalised prime systems. I
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.