47 resultados para Peptide nucleic acid
Resumo:
Three tripeptides Boc-Phe-Aib-Val-OMe (1), Boc-Leu-Aib-p-NA-NO2 (2) and Boc-Pro-Aib-m-NA-NO2 (3) (Aib: alpha-aminoisobutyric acid; p- and m-NA: para- and meta-nitroaniline) have been designed by incorporating aromatic rings to study the self-assembly and fibril formation. Single crystal X-ray diffraction studies show that all the peptides adopt turn-like structures that are self-assembled through intermolecular hydrogen bonds and van der Waals interactions to create layers of beta-sheets. Solvent dependent NMR titration and CD studies show that the turn structures of the peptides also exist in the solution phase. The field emission scanning electron microscopic (FE-SEM) images of the peptides in the solid state reveal fibrillar structures of flat morphology that are formed through beta-sheet mediated self-assembly of the preorganized turn building blocks.
Resumo:
Single crystal X-ray diffraction studies and solvent dependent H-1 NMR titrations reveal that a set of four tetrapeptides with general formula Boc-Xx(1)-Aib(2)-Yy(3)-Zz(4)-OMe, where Xx, Yy and Zz are coded L- amino acids, adopt equivalent conformations that can be described as overlapping double turn conformations stabilized by two 4 -> 1 intramolecular hydrogen bonds between Yy(3)-NH and Boc C=O and Zz(4)-NH and Xx(1)C=O. In the crystalline state, the double turn structures are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. Field emission scanning electron microscopic (FE-SEM) images of the tetrapeptides in the solid state reveal that they can form flat tape-like structures. The results establish that synthetic Aib containing supramolecular helices can form highly ordered self-aggregated amyloid plaque like human amylin.
Resumo:
In this letter, we describe the ring-rearrangement metathesis (RRM) of bicyclic amino acid derivatives. The procedure is of use for the synthesis of constrained amino acid and peptide derivatives with potential as reverse-turn inducers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Three terminally protected tripeptides Boc-gamma-Abu-Val-Leu-OMe 1, Boc-gamma-Abu-Leu-Phe-OMe 2 and Boc-gamma-Abu-Val-Tyr-OMe 3 (gamma-Abu = gamma-aminobutyric acid) each containing an N-terminally positioned gamma-aminobutyric acid residue have been synthesized, purified and studied. FT-IR studies of all these peptides revealed that these peptides form intermolecularly hydrogen bonded supramolecular beta-sheet structures. Peptides 1, 2 and 3 adopt extended backbone beta-strand molecular structures in crystals. Crystal packing of all these peptides demonstrates that these beta-strand structures self-assemble to form intermolecularly H-bonded parallel beta-sheet structures. Peptide 3 uses a side chain tyrosyl -OH group as an additional hydrogen bonding functionality in addition to the backbone CONH groups to pack in crystals. Transmission electron microscopic studies of all peptides indicate that they self-assemble to form nanofibrillar structures of an average diameter of 65 nm. These peptide fibrils exhibit amyloid-like behavior as they bind to a physiological dye Congo red and show a characteristic green-gold birefringence under polarizing microscope.
Resumo:
Protein, generally agreed to be the most satiating macronutrient, may differ in its effects on appetite depending on the protein source and variation in digestion and absorption. We investigated the effects of two milk protein types, casein and whey, on food intake and subjective ratings of hunger and fullness, and on postprandial metabolite and gastrointestinal hormone responses. Two studies were undertaken. The first study showed that energy intake from a buffet meal ad libitum was significantly less 90 min after a 1700 kJ liquid preload containing 48 g whey, compared with an equivalent casein preload (P<0.05). In the second study, the same whey preload led to a 28 % increase in postprandial plasma amino acid concentrations over 3 h compared with casein (incremental area under the curve (iAUC), P<0.05). Plasma cholecystokinin (CCK) was increased by 60 % (iAUC, P<0.005), glucagon-like peptide (GLP)-1 by 65 % (iAUC, P<0.05) and glucose-dependent insulinotropic polypeptide by 36 % (iAUC, P<0.01) following the whey preload compared with the casein. Gastric emptying was influenced by protein type as evidenced by differing plasma paracetamol profiles with the two preloads. Greater subjective satiety followed the whey test meal (P<0.05). These results implicate post-absorptive increases in plasma amino acids together with both CCK and GLP-1 as potential mediators of the increased satiety response to whey and emphasise the importance of considering the impact of protein type on the appetite response to a mixed meal.
Resumo:
The self-assembly of PEGylated peptides containing a modified sequence from the amyloid beta peptide, FEK LVFF, has been studied in aqueous solution. PEG molar masses PEG1k, PEG2k, and PEG10k were used in the conjugates. It is shown that the three FFK LVFF-PEG hybrids form fibrils comprising a FFKLVFF core and a PEG corona. The beta-sheet secondary structure of the peptide is retained in the FFK LVFF fibril core. At sufficiently high concentrations, FEK LVFF-PEG1k and FEK LVFF-PEG2k form a nema tic phase, while PEG10k-FEK LVFF exhibits a hexagonal columnar phase. Simultaneous small angle neutron scattering/shear flow experiments were performed to study the shear flow alignment of the nematic and hexagonal liquid crystal phases. On drying, PEG crystallization occurs without disruption of the FFK LVFF beta-sheet structure leading to characteristic peaks in the X-ray diffraction pattern and FTIR spectra. The stability of beta-sheet structures was also studied in blends of FFKLVFF-PEG conjugates with poly(acrylic acid) (PAA). While PEG crystallization is only observed up to 25% PAA content in the blends, the FFK LVFF beta-sheet structure is retained up to 75% PAA.
Resumo:
The self-assembly of a peptide based on a sequence from the amyloid beta peptide but incorporating the non-natural amino acid beta-2-thienylalanine (2-Thi) has been investigated in aqueous and methanol solutions. The peptide AAKLVFF was used as a design motif, replacing the phenylalanine residues (F) with 2-Thi units to yield (2-Thi)(2-Thi)VLKAA. The 2-Thi residues are expected to confer interesting electronic properties due to charge delocalization and pi-stacking. The peptide is shown to form beta-sheet-rich amyloid fibrils with a twisted morphology, in both water and methanol solutions at sufficiently high concentration. The formation of a self-assembling hydrogel is observed at high concentration. Detailed molecular modeling using molecular dynamics methods was performed using NOE constraints provided by 2D-NMR experiments. The conformational and charge properties of 2-Thi were modeled using quantum mechanical methods, and found to be similar to those previously reported for the beta-3-thienylalanine analogue. The molecular dynamics simulations reveal well-defined folded structures (turn-like) in dilute aqueous solution, driven by self-assembly of the hydrophobic aromatic units, with charged lysine groups exposed to water.
Resumo:
Single-crystal X-ray diffraction studies of two terminally protected tetrapeptides Boc-Ile-Aib-Val-m-ABA-OMe (I) and Boc-Ile-Aib-Phe-m-ABA-OMe (II) (Aib = alpha-aminoisobutyric acid; m-ABA = meta-aminobenzoic acid) reveal that they form continuous H-bonded helices through the association of double-bend (type III and I) building blocks. NMR Studies support the existence of the double-bend (type Ill and I) structures of the peptides in solution also. Field emission scanning electron-microscopic (FE-SEM) and high-resolution transmission electron-microscopic (HR-TEM) images of the peptides exhibit amyloid-like fibrils in the solid state. The Congo red-stained fibrils of peptide I and II, observed between crossed polarizers, show green-gold birefringence, a characteristic of amyloid fibrils.
Resumo:
The influence of charge and aromatic stacking interactions on the self-assembly of a series of four model amyloid peptides has been examined. The four model peptides are based on the KLVFF motif from the amyloid Beta peptide, ABeta(16-20) extended at the N terminus with two Beta-alanine residues. We have studied NH2-BetaABetaAKLVFF-COOH (FF), NH2-BetaABetaAKLVFCOOH (F), CH3CONH-BetaABetaAKLVFF-CONH2 (CapF), and CH3CONH-BetaABetaAKLVFFCONH2 (CapFF). The former two are uncapped (net charge plus 2) and differ by one hydrophobic phenylalanine residue; the latter two are the analogous capped peptides (net charge plus 1). The self-assembly characteristics of these peptides are remarkably different and strongly dependent on concentration. NMR shows a shift from carboxylate to carboxylic acid forms upon increasing concentration. Saturation transfer measurements of solvent molecules indicate selective involvement of phenylalanine residues in driving the self-assembly process of CapFF due presumably to the effect of aromatic stacking interactions. FTIR spectroscopy reveals beta-sheet features for the two peptides containing two phenylalanine residues but not the single phenylalanine residue, pointing again to the driving force for self-assembly. Circular dichroism (CD) in dilute solution reveals the polyproline II conformation, except for F which is disordered. We discuss the relationship of this observation to the significant pH shift observed for this peptide when compared the calculated value. Atomic force microscopy and cryogenic-TEM reveals the formation of twisted fibrils for CapFF, as previously also observed for FF. The influence of salt on the self-assembly of the model beta-sheet forming capped peptide CapFF was investigated by FTIR. Cryo-TEM reveals that the extent of twisting decreases with increased salt concentration, leading to the formation of flat ribbon structures. These results highlight the important role of aggregation-induced pKa shifts in the self-assembly of model beta-sheet peptides.
Resumo:
The incorporation of potentially catalytic groups in DNA is of interest for the in vitro selection of novel deoxyribozymes, A series of 10 C5-modified analogues of 2'-deoxyuridine triphosphate have been synthesised that possess side chains of differing flexibility and bearing a primary amino or imidazole functionality, For each series of nucleotide analogues differing degrees of flexibility of the C5 side chain was achieved through the use of alkynyl, alkenyl and alkyl moieties, The imidazole function was conjugated to these CS-amino-modified nucleotides using either imidazole 4-acetic acid or imidazole 4-acrylic acid (urocanic acid), The substrate properties of the nucleotides (fully replacing dTTP) with Taq polymerase during PCR have been investigated in order to evaluate their potential applications for in vitro selection experiments, 5-(3-Aminopropynyl)dUTP and 5-(E-3-aminopropenyl)dUTP and their imidazole 4-acetic acid- and urocanic acid-modified conjugates were found to be substrates, In contrast, C5-amino-modified dUTPs with alkane or Z-alkene linkers and their corresponding conjugates were not substrates, The incorporation of these analogues during PCR has been confirmed by inhibition of restriction enzyme digestion using XbaI and by mass spectrometry of the PCR products.
Resumo:
Controlling the morphology of self-assembled peptide nanostructures, particularly those based on amyloid peptides, has been the focus of intense research. In order to exploit these structures in electronic applications, further understanding of their electronic behavior is required. In this work, the role of peptide morphology in determining electronic conduction along self-assembled peptide nanofilament networks is demonstrated. The peptides used in this work were based on the sequence AAKLVFF, which is an extension of a core sequence from the amyloid b peptide. We show that the incorporation of a non-natural amino acid, 2-thienylalanine, instead of phenylalanine improves the obtained conductance with respect to that obtained for a similar structure based on the native sequence, which was not the case for the incorporation of 3-thienylalanine. Furthermore, we demonstrate that the morphology of the self-assembled structures, which can be controlled by the solvent used in the assembly process, strongly affects the conductance, with larger conduction obtained for a morphology of long, straight filaments. Our results demonstrate that, similar to natural systems, the assembly and folding of peptides could be of great importance for optimizing their function as components of electronic devices. Hence, sequence design and assembly conditions can be used to control the performance of peptide based structures in such electronic applications.
Resumo:
Activation of platelets by collagen is mediated through a tyrosine kinase-dependent pathway that is associated with phosphorylation of the Fc receptor gamma chain, the tyrosine kinase syk, and phospholipase C gamma2 (PLC gamma2). We recently described a collagen-related triple-helical peptide (CRP) with the sequence GCP*(GPP*)GCP*G (single letter amino acid code: P* = hydroxyproline; Morton et al, Biochem J306:337, 1995). The cross-linked peptide is a potent stimulus of platelet activation but, unlike collagen, does not support alpha2beta1-mediated, Mg2+-dependent adhesion, suggesting that its action is independent of the integrin alpha2beta1. This finding suggests the existence of a platelet receptor other than alpha2beta1 that underlies activation. In the present study, we show that CRP stimulates tyrosine phosphorylation of the same pattern of proteins in platelets as collagen, including syk and PLC gamma2. Protein tyrosine phosphorylation induced by CRP is not altered in the absence of Mg2+ or the presence of monoclonal antibodies (MoAbs) to the integrin alpha2beta1 (MoAb 6F1 and MoAb 13), conditions that prevent the interaction of collagen with the integrin. In contrast, phosphorylation of syk and PLC gamma2 by collagen is partially reduced by MoAb 6F1 and MoAb 13 or by removal of Mg2+. This may reflect a direct role of alpha2beta1 in collagen-induced signaling events or an indirect role in which the integrin facilitates the binding of collagen to its signaling receptor. The results show an alpha2beta1-independent pathway of platelet activation by CRP that involves phosphorylation of syk and PLC gamma2. This pathway appears to contribute to platelet activation by collagen.
Resumo:
Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide- and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.
Resumo:
We studied the self-assembly of peptide A6RGD (A: alanine, R: arginine, G: glycine, D: aspartic acid) in water, and the use of A6RGD substrates as coatings to promote the attachment of human cornea stromal fibroblasts (hCSFs). The self-assembled motif of A6RGD was shown to depend on the peptide concentration in water, where both vesicle and fibril formation were observed. Oligomers were detected for 0.7 wt% A6RGD, which evolved into short peptide fibres at 1.0 wt% A6RGD, while a co-existence of vesicles and long peptide fibres was revealed for 2–15 wt% A6RGD. A6RGD vesicle walls were shown to have a multilayer structure built out of highly interdigitated A6 units, while A6RGD fibres were based on β-sheet assemblies. Changes in the self-assembly motif with concentration were reflected in the cell culture assay results. Films dried from 0.1–1.0 wt% A6RGD solutions allowed hCSFs to attach and significantly enhanced cell proliferation relative to the control. In contrast, films dried from 2.5 wt% A6RGD solutions were toxic to hCSFs.
Resumo:
IntFOLD is an independent web server that integrates our leading methods for structure and function prediction. The server provides a simple unified interface that aims to make complex protein modelling data more accessible to life scientists. The server web interface is designed to be intuitive and integrates a complex set of quantitative data, so that 3D modelling results can be viewed on a single page and interpreted by non-expert modellers at a glance. The only required input to the server is an amino acid sequence for the target protein. Here we describe major performance and user interface updates to the server, which comprises an integrated pipeline of methods for: tertiary structure prediction, global and local 3D model quality assessment, disorder prediction, structural domain prediction, function prediction and modelling of protein-ligand interactions. The server has been independently validated during numerous CASP (Critical Assessment of Techniques for Protein Structure Prediction) experiments, as well as being continuously evaluated by the CAMEO (Continuous Automated Model Evaluation) project. The IntFOLD server is available at: http://www.reading.ac.uk/bioinf/IntFOLD/