75 resultados para Penalty-based function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State-of-the-art computational methodologies are used to investigate the energetics and dynamics of photodissociated CO and NO in myoglobin (Mb···CO and Mb···NO). This includes the combination of molecular dynamics, ab initio MD, free energy sampling, and effective dynamics methods to compare the results with studies using X-ray crystallography and ultrafast spectroscopy metho ds. It is shown that modern simulation techniques along with careful description of the intermolecular interactions can give quantitative agreement with experiments on complex molecular systems. Based on this agreement predictions for as yet uncharacterized species can be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new structure of Radial Basis Function (RBF) neural network called the Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction. The hidden nodes of a conventional RBF network compare the Euclidean distance between the network input vector and the centres, and the node responses are radially symmetrical. But in time series prediction where the system input vectors are lagged system outputs, which are usually highly correlated, the Euclidean distance measure may not be appropriate. The DRBF network modifies the distance metric by introducing a classification function which is based on the estimation data set. Training the DRBF networks consists of two stages. Learning the classification related basis functions and the important input nodes, followed by selecting the regressors and learning the weights of the hidden nodes. In both cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially to select the important input nodes and then to select the important centres. Simulation results of single-step and multi-step ahead predictions over a test data set are included to demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fast backward elimination algorithm is introduced based on a QR decomposition and Givens transformations to prune radial-basis-function networks. Nodes are sequentially removed using an increment of error variance criterion. The procedure is terminated by using a prediction risk criterion so as to obtain a model structure with good generalisation properties. The algorithm can be used to postprocess radial basis centres selected using a k-means routine and, in this mode, it provides a hybrid supervised centre selection approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution proposes a powerful technique for two-class imbalanced classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisation (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier's structure and the parameters of RBF kernels are determined using a PSO algorithm based on the criterion of minimising the leave-one-out misclassification rate. The experimental results obtained on a simulated imbalanced data set and three real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the selection of centres for radial basis function (RBF) networks. A novel mean-tracking clustering algorithm is described as a way in which centers can be chosen based on a batch of collected data. A direct comparison is made between the mean-tracking algorithm and k-means clustering and it is shown how mean-tracking clustering is significantly better in terms of achieving an RBF network which performs accurate function modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new tropopause definition, based on a flow-dependent blending of the traditional thermal tropopause with one based on potential vorticity, has been developed. The benefits of such a blending algorithm are most apparent in regions with synoptic scale fluctuations between tropical and extratropical airmasses. The properties of the local airmass determine the relative contributions to the location of the blended tropopause, rather than this being determined by a specified function of latitude. Global climatologies of tropopause height, temperature, potential temperature and zonal wind, based on European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA) ERA-Interim data, are presented for the period 1989-2007. Features of the seasonal-mean tropopause are discussed on a global scale, alongside a focus on selected monthly climatologies for the two high latitude regions and the tropical belt. The height differences between climatologies based on ERA-Interim and ERA-40 data are also presented. Key spatial and temporal features seen in earlier climatologies, based mainly on the World Meteorological Organization thermal tropopause definition, are reproduced with the new definition. Tropopause temperatures are consistent with those from earlier climatologies, despite some differences in height in the extratropics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Thiol isomerases are a family of endoplasmic reticulum enzymes which orchestrate redox-based modifications of protein disulphide bonds. Previous studies have identified important roles for the thiol isomerases PDI and ERp5 in the regulation of normal platelet function. Objectives: Recently, we demonstrated the presence of a further five thiol isomerases at the platelet surface. In this report we aim to report the role of one of these enzymes - ERp57 in the regulation of platelet function. Methods/Results: Using enzyme activity function blocking antibodies, we demonstrate a role for ERp57 in platelet aggregation, dense granule secretion, fibrinogen binding, calcium mobilisation and thrombus formation under arterial conditions. In addition to the effects of ERp57 on isolated platelets, we observe the presence of ERp57 in the developing thrombus in vivo. Furthermore the inhibition of ERp57 function was found to reduce laser-injury induced arterial thrombus formation in a murine model of thrombosis. Conclusions: These data suggest that ERp57 is important for normal platelet function and opens up the possibility that the regulation of platelet function by a range of cell surface thiol isomerases may represent a broad paradigm for the regulation of haemostasis and thrombosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper re-examines whether it is more advantageous in terms of risk reduction to diversify by sector or region by comparing the performance of the ‘conventional’ regional classification of the UK with one based on modern socio-economic criteria using a much larger real estate data set than any previous study and the MAD portfolio approach. The general conclusion of this analysis is that property market sectors still dominate regions, however defined and so should be the first level of analysis when developing a portfolio diversification strategy. This is in line with previous research. When the performance of Functional groups is compared with the ‘conventional’ administrative regions the results here show that, when functionally based, groupings can in some cases provide greater risk reduction. In addition the underlying characteristics of these functional groups may be much more insightful and acceptable to real estate portfolio managers in considering the assets that a portfolio might contain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.