79 resultados para Passive revolution
Resumo:
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Resumo:
Passive samplers have been predominantly used to monitor environmental conditions in single volumes. However, measurements using a calibrated passive sampler- Solid Phase Microextraction (SPME) fibre, in three houses with cold pitched roof, successfully demonstrated the potential of the SPME fibre as a device for monitoring air movement in two volumes. The roofs monitored were pitched at 15° - 30° with insulation thickness varying between 200-300 mm on the ceiling. For effective analysis, two constant sources of volatile organic compounds were diffused steadily in the house. Emission rates and air movement from the house to the roof was predicted using developed algorithms. The airflow rates which were calibrated against conventional tracer gas techniques were introduced into a HAM software package to predict the effects of air movement on other varying parameters. On average it was shown from the in situ measurements that about 20-30% of air entering the three houses left through gaps and cracks in the ceiling into the roof. Although these field measurements focus on the airflows, it is associated with energy benefits such that; if these flows are reduced then significantly energy losses would also be reduced (as modelled) consequently improving the energy efficiency of the house. Other results illustrated that condensation formation risks were dependent on the airtightness of the building envelopes including configurations of their roof constructions.