35 resultados para Papillary Muscles
Resumo:
Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide. We show that a single injection of an AAV8 virus expressing the myostatin propeptide induced an increase in whole body weights and all muscles examined within 7 weeks of treatment. Our cellular studies demonstrate that muscle enlargement was due to selective fiber type hypertrophy, which was accompanied by a shift toward a glycolytic phenotype. Our molecular investigations elucidate the mechanism underpinning muscle hypertrophy by showing a decrease in the expression of key genes that control ubiquitin-mediated protein breakdown. Most importantly, we show that the hypertrophic muscle that develops as a consequence of myostatin propeptide in aged mice has normal contractile properties. We suggest that attenuating myostatin signaling could be a very attractive strategy to halt and possibly reverse age-related muscle loss.
Resumo:
Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P,0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly antagonizes the biological activity of the canonical gene product.
Resumo:
Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn/ mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn/ mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn/ mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn/ mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.
Resumo:
mdx mice are believed to be virtually free from neuromuscular symptoms, despite the presence of a degenerative/regenerative process that involves all skeletal muscles. We analyzed both the spontaneous motility and treadmill motor activity of mdx mice aged 15 days to 6 months. Our results indicate that there is an early period, between the end of the second and up to the fifth week of life, when mdx mice experience extreme weakness. After this critical period, both spontaneous motility and endurance of mdx mice, although lower than those of controls, do not show statistically significant differences up to 6 months of age. We also carried out a detailed histological analysis of proximal and distal muscle groups in mdx mice during this early critical motility period. The occurrence of extensive necrosis followed by regeneration and involving proximal muscles before distal ones was documented in mice as young as 16-17 days of age and reached a peak at day 18. We conclude that dystrophin deficiency induces muscle degeneration and significant weakness in mdx mice, but only in an early period. Later on, during development, mdx mice adapt to the lack of this protein and do not show detectable in vivo functional muscle impairment up to 6 months of age.
Resumo:
We assess the corticomuscular coherence (CMC) of the contralateral primary motor cortex and the hand muscles during a finger force-tracking task and explore whether the pattern of finger coordination has an impact on the CMC level. Six healthy subjects (three men and three women) were recruited to conduct the force-tracking tasks comprising two finger patterns, i.e., natural combination of index and middle fingers and unnatural combination of index and middle fingers (i.e., simultaneously producing equal force strength in index and middle finger). During the conducting of the tasks with right index and middle finger, MEG and sEMG signals were recorded from left primary motor cortex (M1) and right flexor digitorum superficialis (FDS), respectively; the contralateral CMC was calculated to assess the neuromuscular interaction. Finger force-tracking tasks of Common-IM only induce beta-band CMC, whereas Uncommon-IM tasks produce CMC in both beta and low-gamma band. Compared to the force-tracking tasks of Common-IM, the Uncommon-IM task is associated with the most intensive contralateral CMC. Our study demonstrated that the pattern of finger coordination had significant impact on the CMC between the contralateral M1 and hand muscles, and more corticomuscular interaction was necessary for unnaturally coordinated finger activities to regulate the fixed neural drive of hand muscles.