33 resultados para PHOSPHINE ADDUCTS
Resumo:
Three novel heteroleptic complexes of the type cis- [ML(dppe)] [M = Ni(II), Pd(II), Pt(II); L = p-tolylsulfonyl dithiocarbimate; dppe = 1,2-bis(diphenylphosphino)ethane] have been prepared and characterized. X-ray crystallography revealed the close proximity of one of the ortho phenyl protons of the dppe ligand to the metal in the Ni(II) complex showing existence of the less common C-H center dot center dot center dot Ni anagostic interactions observed for the first time in the dithio-phosphine mixed-ligand systems. The platinum complex showed a strong photoluminescence emission near visible region in CH(2)Cl(2) solution.
Resumo:
An efficient synthesis of spirocyclic triazolooxazine nucleosides is described. This was achieved by the conversion of β-D-psicofuranose to the corresponding azido-derivative, followed by alkylation of the primary alcohol with a range of propargyl bromides - obtained via Sonogashira chemistry. The products of these reactions underwent 1,3-dipolar addition smoothly to generate the protected spirocyclic adducts. These were easily deprotected to give the corresponding ribose nucleosides. The library of compounds obtained was investigated for its antiviral activity, using MHV (Mouse Hepatitis Virus) as a model wherein derivative 3f showed the most promising activity and tolerability.
Resumo:
High explosives are highly sensitive to accidental detonation by impact, fire, shrapnel and small arms fire. This sensitivity can be reduced by storing the energetic material within a rubbery polymer matrix and are known as plastic bonded explosives (PBX). The current procedure used to manufacture PBX involves mixing the energetic material with a hydroxy-functionalised aliphatic polymer. Upon the addition of an isocyanate crosslinker an immediate polymerisation occurs and thus the rapidly curing mixture must be used to fill the missile or shells, referred to as ‘stores’. This process can lead to poor distribution of the crosslinker resulting in the formation of an inhomogeneously crosslinked matrix and the formation of voids. One solution to this problem involves containing the crosslinker within polyurethane microcapsules that are uniformly dispersed in the explosive-polymer mixture. Upon the application of a stimulus the crosslinker can be released from the microcapsules and the formation of a uniformly crosslinked PBX achieved. Herein is reported the design and synthesis of polyurethane microcapsules that release isocyanate crosslinkers when desired using a thermal stimulus. This has been achieved by exploiting the thermally-reversible nature of oxime-urethane and Diels-Alder adducts that have been incorporated into the shell wall of the microcapsules. An alternative approach to controlling the polymerisation of PBX materials has also been achieved using thermally-reversible blocked isocyanates that regenerate the isocyanate crosslinker when exposed to heat.