64 resultados para Origin of life
Resumo:
Bifidobacteria in the infant faecal microbiota have been the focus of much interest, especially during the exclusive milk-feeding period and in relation to the fortification of infant formulae to better mimic breast milk. However, longitudinal studies examining the diversity and dynamics of the Bifidobacterium population of infants are lacking, particularly in relation to the effects of weaning. Using a polyphasic strategy, the Bifidobacterium populations of breast- and formula-fed infants were examined during the first 18 months of life. Bifidobacterium-specific denaturing gradient gel electrophoresis demonstrated that breast-fed infants harboured greater diversity than formula-fed infants and the diversity of the infants' Bifidobacterium populations increased with weaning. Twenty-seven distinctive banding profiles were observed from ∼1100 infant isolates using ribosomal intergenic spacer analysis, 14 biotypes of which were confirmed to be members of the genus Bifidobacterium. Two profiles (H, Bifidobacterium longum subsp. infantis; and I, Bifidobacterium bifidum) were common culturable biotypes, seen in 9/10 infants, while profile E (Bifidobacterium breve) was common among breast-fed infants. Overall, inter- and intra-individual differences were observed in the Bifidobacterium populations of infants between 1 and 18 months of age, although weaning was associated with increased diversity of the infant Bifidobacterium populations. Breast-fed infants generally harboured a more complex Bifidobacterium microbiota than formula-fed infants.
Resumo:
A digital resource, which aims to become a comprehensive catalogue of all known species of organisms on Earth.
Resumo:
Laboratory experiments to determine the preferred orientation of free-falling hexagonal prisms were performed at Reynolds numbers appropriate to falling ice crystals in the atmosphere. Hexagonal plates orient with their c axis vertical for aspect ratios < 0.9, whilst hexagonal columns fall with their c axis horizontal. A secondary alignment is also observed: regular hexagonal columns fall preferentially with two prism facets aligned vertically and not horizontally – the latter scenario was previously assumed to be responsible for the rare Parry arc. However, if the column is made scalene in its cross-section, it can orient such that a pair of prism facets is horizontal. This finding indicates that the development of scalene crystals may be key to the production of certain ice-crystal optical phenomena
Resumo:
Background: Although aphasia affects quality of life (QoL), the impact within specific domains (e.g., psychosocial, communication) is poorly understood. Moreover, the complex and multidimensional nature of QoL renders it difficult to measure accurately using a single global scale. Aims: Using two recently developed QoL scales, the Stroke and Aphasia Quality of Life Scale-39, (SAQOL; Hilari, Byng, Lamping, & Smith, 2003a) and the American Speech Language Hearing Association’s Quality of Communication Life Scale (QCL; Paul et al., 2004), this study aimed to document the domains of QoL that were most affected for participants with aphasia compared to control participants, as well as to determine the relationship between the two scales, their sub-domains, and linguistic variables in aphasia. Methods & Procedures: The two scales were administered to a group of 19 participants with aphasia (14 male, 5 female), ages ranging from 27 to 79 years, and 19 age- and gender-matched control participants. Various types and severity of aphasia were represented in the aphasia group. The performances of aphasia and control groups were compared, and correlation analyses examined the relationship between the two scales and their sub-domains in the aphasia group only. Outcomes & Results: Compared to control participants, QoL was lower in participants with aphasia, with the communication sub-domain of SAQOL and socialisation/ activities sub-domain of QCL being the most affected areas of functioning. Between the two scales, the communication sub-domain of SAQOL correlated with the socialisation/ activities sub-domain and the QCL mean. Moreover, linguistic variables correlated strongly with psychosocial, communication and socialisation/activities sub-domains of QoL. Conclusions: Measuring QoL using the SAQOL and the QCL captures different but equally important aspects of experiences of living with aphasia. When interpreted together, they provide a holistic picture of functioning in aphasia that includes broad overviews of QoL from the SAQOL and a finer-grained analysis of communication impairments on QoL from the QCL.
Resumo:
UV–Vis absorption spectra of one-electron reduction products and 3MLCT excited states of [ReICl(CO)3- (N,N)] (N,N = 2,20-bipyridine, bpy; 1,10-phenanthroline, phen) have been measured by low-temperature spectroelectrochemistry and UV–Vis transient absorption spectroscopy, respectively, and assigned by open-shell TD-DFT calculations. The characters of the electronic transitions are visualized and analyzed using electron density redistribution maps. It follows that reduced and excited states can be approximately formulated as [ReICl(CO)3(N,Nÿ)]ÿ and ⁄[ReIICl(CO)3(N,Nÿ)], respectively. UV–Vis spectra of the reduced complexes are dominated by IL transitions, plus weaker MLCT contributions. Excited-state spectra show an intense band in the UV region of 50% IL origin mixed with LMCT (bpy, 373 nm) or MLCT (phen, 307 nm) excitations. Because of the significant IL contribution, this spectral feature is akin to the principal IL band of the anions. In contrast, the excited-state visible spectral pattern arises from predominantly LMCT transitions, any resemblance with the reduced-state visible spectra being coincidental. The Re complexes studied herein are representatives of a broad class of metal a-diimines, for which similar spectroscopic behavior can be expected.
Resumo:
Exponential spectra are found to characterize variability of the Northern Annular Mode (NAM) for periods less than 36 days. This corresponds to the observed rounding of the autocorrelation function at lags of a few days. The characteristic persistence timescales during winter and summer is found to be ∼5 days for these high frequencies. Beyond periods of 36 days the characteristic decorrelation timescale is ∼20 days during winter and ∼6 days in summer. We conclude that the NAM cannot be described by autoregressive models for high frequencies; the spectra are more consistent with low-order chaos. We also propose that the NAM exhibits regime behaviour, however the nature of this has yet to be identified.
Resumo:
Over the past decade genomic approaches have begun to revolutionise the study of animal diversity. In particular, genome sequencing programmes have spread beyond the traditional model species to encompass an increasing diversity of animals from many different phyla, as well as unicellular eukaryotes that are closely related to the animals. Whole genome sequences allow researchers to establish, with reasonable confidence, the full complement of any particular family of genes in a genome. Comparison of gene complements from appropriate genomes can reveal the evolutionary history of gene families, indicating when both gene diversification and gene loss have occurred. More than that, however, assembled genomes allow the genomic environment in which individual genes are found to be analysed and compared between species. This can reveal how gene diversification occurred. Here, we focus on the Fox genes, drawing from multiple animal genomes to develop an evolutionary framework explaining the timing and mechanism of origin of the diversity of animal Fox genes. Ancient linkages between genes are a prominent feature of the Fox genes, depicting a history of gene clusters, some of which may be relevant to understanding Fox gene function.
Resumo:
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations inmetabolicdesign.Hereweshowthat thescalingsofmetabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions.Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly inmetazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling ofmaximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups.Major changes inmetabolic processes duringtheearlyevolutionof life overcameexistingconstraints, exploited new opportunities, and imposed new constraints. The 3.5 billion year history of life on earth was characterized by